化学通报(网络版)
化學通報(網絡版)
화학통보(망락판)
Chemistry Online
2008年
1期
1-8
,共8页
汤桦%陈大舟%张庆合%于慧梅%徐锐锋
湯樺%陳大舟%張慶閤%于慧梅%徐銳鋒
탕화%진대주%장경합%우혜매%서예봉
同位素稀释质谱法%孔雀石绿%无色孔雀石绿%三文鱼
同位素稀釋質譜法%孔雀石綠%無色孔雀石綠%三文魚
동위소희석질보법%공작석록%무색공작석록%삼문어
Isotope Dilution Mass Spectrometry%Malachite Green%Leucomalachite Green%Salmon
建立了三文鱼中孔雀石绿和无色孔雀石绿的同位素稀释质谱测定法,即:通过添加作为同位素稀释剂的氘代孔雀石绿和无色孔雀石绿到样品中,经液液萃取、提取中添加中性氧化铝以及过碱性氧化铝小柱进行净化的前处理,然后由以乙腈和乙酸铵缓冲液(0.05 mol/L, pH 4.5)为流动相的液相色谱/离子阱质谱联用来作为分离检测手段.对含不同浓度孔雀石绿和无色孔雀石绿的储备液在不同溶剂、酸度、时间和温度的稳定性,前处理过程中的中性氧化铝的合适添加量、破乳剂的选择、孔雀石绿和无色孔雀石绿在氮吹和旋蒸过程中的损失以及液相色谱和质谱条件进行了研究.该方法的孔雀石绿和无色孔雀石绿的回收率分别为95.6%~103.3%和97.64%~100.80%,检测限为0.4和0.3μg/kg,相对标准偏差分别为4.76%~6.13%和3.14%~5.67%.结果表明,所建立的方法快速、灵敏、准确、可靠.
建立瞭三文魚中孔雀石綠和無色孔雀石綠的同位素稀釋質譜測定法,即:通過添加作為同位素稀釋劑的氘代孔雀石綠和無色孔雀石綠到樣品中,經液液萃取、提取中添加中性氧化鋁以及過堿性氧化鋁小柱進行淨化的前處理,然後由以乙腈和乙痠銨緩遲液(0.05 mol/L, pH 4.5)為流動相的液相色譜/離子阱質譜聯用來作為分離檢測手段.對含不同濃度孔雀石綠和無色孔雀石綠的儲備液在不同溶劑、痠度、時間和溫度的穩定性,前處理過程中的中性氧化鋁的閤適添加量、破乳劑的選擇、孔雀石綠和無色孔雀石綠在氮吹和鏇蒸過程中的損失以及液相色譜和質譜條件進行瞭研究.該方法的孔雀石綠和無色孔雀石綠的迴收率分彆為95.6%~103.3%和97.64%~100.80%,檢測限為0.4和0.3μg/kg,相對標準偏差分彆為4.76%~6.13%和3.14%~5.67%.結果錶明,所建立的方法快速、靈敏、準確、可靠.
건립료삼문어중공작석록화무색공작석록적동위소희석질보측정법,즉:통과첨가작위동위소희석제적도대공작석록화무색공작석록도양품중,경액액췌취、제취중첨가중성양화려이급과감성양화려소주진행정화적전처리,연후유이을정화을산안완충액(0.05 mol/L, pH 4.5)위류동상적액상색보/리자정질보련용래작위분리검측수단.대함불동농도공작석록화무색공작석록적저비액재불동용제、산도、시간화온도적은정성,전처리과정중적중성양화려적합괄첨가량、파유제적선택、공작석록화무색공작석록재담취화선증과정중적손실이급액상색보화질보조건진행료연구.해방법적공작석록화무색공작석록적회수솔분별위95.6%~103.3%화97.64%~100.80%,검측한위0.4화0.3μg/kg,상대표준편차분별위4.76%~6.13%화3.14%~5.67%.결과표명,소건립적방법쾌속、령민、준학、가고.
A quantitative liquid chromatography–-tandem mass spectrometric (LC–-MS/MS) method has been developed for the determination of malachite green (MG) and its metabolite leucomalachite green (LMG) in salmon fish. Residues were extracted with the acetonitrile–acetate system. The samples were purified by using neutral alumina in extraction process and alkaline alumina SPE column, then it was analyzed with a reversed-phase LC–MS/MS using a positive-ion electrospray ionisation (ESI). Isotope-labelled malachite green (MG-D5) and leucomalachite green (LMG-D5) were used as an internal standard for the quantification of MG and LMG residues. The detection limit for MG and LMG was 0.4 and 0.3 μg/kg, respectively. The relative recovery was in the range of 95.6%~103.3% for MG and 97.64%~100.80% for LMG. The stability of MG and LMG stock solutions was studied in different conditions, such as solvent, acidity, time and temperature. The loss of MG and LMG in the process of nitrogen blowing and vacuum evaporation was investigated.