南华大学学报(自然科学版)
南華大學學報(自然科學版)
남화대학학보(자연과학판)
JOURNAL OF NANHUA UNIVERSITY(SCIENCE AND TECHNOLOGY)
2012年
3期
85-88
,共4页
常微分方程%积分边值问题%解的存在性%靶向法
常微分方程%積分邊值問題%解的存在性%靶嚮法
상미분방정%적분변치문제%해적존재성%파향법
ordinary differential equation%integral boundary value problem%existence of positive solutions%shooting method
运用靶向法研究了一类非线性二阶常微分方程三点积分边值问题正解的存在性.通过构造一个二次函数及一个正弦函数做为目标函数,并结合使用积分中值定理及Sturm比较定理,得到了上述边值问题存在正解的充分条件.
運用靶嚮法研究瞭一類非線性二階常微分方程三點積分邊值問題正解的存在性.通過構造一箇二次函數及一箇正絃函數做為目標函數,併結閤使用積分中值定理及Sturm比較定理,得到瞭上述邊值問題存在正解的充分條件.
운용파향법연구료일류비선성이계상미분방정삼점적분변치문제정해적존재성.통과구조일개이차함수급일개정현함수주위목표함수,병결합사용적분중치정리급Sturm비교정리,득도료상술변치문제존재정해적충분조건.
Using the method of shooting ,the existence of positive solutions for a class of second‐order three‐point integral boundary‐point problem is studied .By constructing a quadratic function and a sine function as the objective functions and combining with the Integral Mean Value Theorem and Sturm Comparison Theorem , we obtained the sufficient conditions for the existence of positive solutions to the boundary‐value problem .