农业工程学报
農業工程學報
농업공정학보
2013年
3期
54-61
,共8页
汪沛%胡炼%周志艳%杨维顺%刘爱民%罗锡文%薛新宇%何杰%严乙桉
汪沛%鬍煉%週誌豔%楊維順%劉愛民%囉錫文%薛新宇%何傑%嚴乙桉
왕패%호련%주지염%양유순%류애민%라석문%설신우%하걸%엄을안
无人机%测量%试验%风速%风场%水稻制种%辅助授粉
無人機%測量%試驗%風速%風場%水稻製種%輔助授粉
무인궤%측량%시험%풍속%풍장%수도제충%보조수분
unmanned aerial vehicles%measurements%experiments%rice seed production%supplementary pollination%wind speed%wind field
无人驾驶直升机具有机动灵活、不需要专用机场等特点,目前已在农业航空植保中得到应用.杂交水稻制种中,利用无人直升飞机飞行时其旋翼产生的风力能使父本花粉传播更远,可扩大父本和母本相间种植的宽度,实现父本和母本的机械化耕种和收割,从而实现制种全程机械化.杂交稻制种辅助授粉的效果(母本异交结实率)、作业效率及经济效益与无人直升机飞行时产生的风速、风向和风场宽度等参数密切相关,但迄今尚不明确.该文采用风场无线传感器网络测量系统组成三向风速测量线阵和单向风速面阵在水稻田里对无人油动单旋翼直升机飞行时的风场进行了测量试验,目的在于探明无人直升机在辅助授粉作业时不同方向的风速和风场宽度等参数,以便决策出较佳的飞行作业参数,包括飞行高度、作业航向等.无人直升机授粉作业的飞行速度设置为3 m/s,作业载荷为3.75 kg,飞行高度为:9、8、7和6 m,测量的风向为:平行于飞行方向(X)、垂直于飞行方向(Y)、垂直于地面方向(Z).测量试验结果表明,上述3个风向的风速值大小排序为 VX>VY>VZ,且风速持续稳定,因此,在直升机辅助水稻授粉作业时,平行于飞行方向的风力(即沿着直升机前进方向的飞机尾风)更有益于辅助授粉作业;随着飞行高度不断降低,风场宽度亦有所增加,在飞行高度为6~8 m 时,达到3级风的风场宽度最大可达到9 m,飞行高度为9 m 时,达到3级风的风场宽度最大仅为4 m,明显缩小,综合考虑农艺要求、作业效率及安全性等因素,该文建议无人驾驶油动单旋翼直升机 Z3机型的较佳飞行作业高度为7 m;直升机逆自然风方向飞行作业时到达水稻冠层的风力较小,很难形成能满足水稻制种授粉所需的风场宽度和风速,而顺风方向飞行时的风场宽度和风速较大,因此采用油动力无人直升机辅助水稻制种授粉时,宜避免逆自然风方向飞行作业.该研究可为无人直升机水稻制种辅助授粉技术的发展提供参考.
無人駕駛直升機具有機動靈活、不需要專用機場等特點,目前已在農業航空植保中得到應用.雜交水稻製種中,利用無人直升飛機飛行時其鏇翼產生的風力能使父本花粉傳播更遠,可擴大父本和母本相間種植的寬度,實現父本和母本的機械化耕種和收割,從而實現製種全程機械化.雜交稻製種輔助授粉的效果(母本異交結實率)、作業效率及經濟效益與無人直升機飛行時產生的風速、風嚮和風場寬度等參數密切相關,但迄今尚不明確.該文採用風場無線傳感器網絡測量繫統組成三嚮風速測量線陣和單嚮風速麵陣在水稻田裏對無人油動單鏇翼直升機飛行時的風場進行瞭測量試驗,目的在于探明無人直升機在輔助授粉作業時不同方嚮的風速和風場寬度等參數,以便決策齣較佳的飛行作業參數,包括飛行高度、作業航嚮等.無人直升機授粉作業的飛行速度設置為3 m/s,作業載荷為3.75 kg,飛行高度為:9、8、7和6 m,測量的風嚮為:平行于飛行方嚮(X)、垂直于飛行方嚮(Y)、垂直于地麵方嚮(Z).測量試驗結果錶明,上述3箇風嚮的風速值大小排序為 VX>VY>VZ,且風速持續穩定,因此,在直升機輔助水稻授粉作業時,平行于飛行方嚮的風力(即沿著直升機前進方嚮的飛機尾風)更有益于輔助授粉作業;隨著飛行高度不斷降低,風場寬度亦有所增加,在飛行高度為6~8 m 時,達到3級風的風場寬度最大可達到9 m,飛行高度為9 m 時,達到3級風的風場寬度最大僅為4 m,明顯縮小,綜閤攷慮農藝要求、作業效率及安全性等因素,該文建議無人駕駛油動單鏇翼直升機 Z3機型的較佳飛行作業高度為7 m;直升機逆自然風方嚮飛行作業時到達水稻冠層的風力較小,很難形成能滿足水稻製種授粉所需的風場寬度和風速,而順風方嚮飛行時的風場寬度和風速較大,因此採用油動力無人直升機輔助水稻製種授粉時,宜避免逆自然風方嚮飛行作業.該研究可為無人直升機水稻製種輔助授粉技術的髮展提供參攷.
무인가사직승궤구유궤동령활、불수요전용궤장등특점,목전이재농업항공식보중득도응용.잡교수도제충중,이용무인직승비궤비행시기선익산생적풍력능사부본화분전파경원,가확대부본화모본상간충식적관도,실현부본화모본적궤계화경충화수할,종이실현제충전정궤계화.잡교도제충보조수분적효과(모본이교결실솔)、작업효솔급경제효익여무인직승궤비행시산생적풍속、풍향화풍장관도등삼수밀절상관,단흘금상불명학.해문채용풍장무선전감기망락측량계통조성삼향풍속측량선진화단향풍속면진재수도전리대무인유동단선익직승궤비행시적풍장진행료측량시험,목적재우탐명무인직승궤재보조수분작업시불동방향적풍속화풍장관도등삼수,이편결책출교가적비행작업삼수,포괄비행고도、작업항향등.무인직승궤수분작업적비행속도설치위3 m/s,작업재하위3.75 kg,비행고도위:9、8、7화6 m,측량적풍향위:평행우비행방향(X)、수직우비행방향(Y)、수직우지면방향(Z).측량시험결과표명,상술3개풍향적풍속치대소배서위 VX>VY>VZ,차풍속지속은정,인차,재직승궤보조수도수분작업시,평행우비행방향적풍력(즉연착직승궤전진방향적비궤미풍)경유익우보조수분작업;수착비행고도불단강저,풍장관도역유소증가,재비행고도위6~8 m 시,체도3급풍적풍장관도최대가체도9 m,비행고도위9 m 시,체도3급풍적풍장관도최대부위4 m,명현축소,종합고필농예요구、작업효솔급안전성등인소,해문건의무인가사유동단선익직승궤 Z3궤형적교가비행작업고도위7 m;직승궤역자연풍방향비행작업시도체수도관층적풍력교소,흔난형성능만족수도제충수분소수적풍장관도화풍속,이순풍방향비행시적풍장관도화풍속교대,인차채용유동력무인직승궤보조수도제충수분시,의피면역자연풍방향비행작업.해연구가위무인직승궤수도제충보조수분기술적발전제공삼고.
The unmanned helicopter has been widely used in agricultural plant protection because it is operationally flexible and does not require a special airport. To achieve full mechanization in hybrid rice breeding, it is necessary to expand the planting width of the male and female parents of hybrid rice. The wind made by the helicopter rotor can spread the paternal pollen farther, making it possible to achieve full mechanization in hybrid rice breeding. There are close relationships among the seed setting rate, operating efficiency, cost-effectiveness, and the parameters of the unmanned helicopter flight, including the wind speed, wind direction and wind field width. However, studies are scarce in this area so far. To explore the optimization parameters while the unmanned helicopter conducts supplementary pollination, including flight altitude, operating load, and operating heading, in this study a wireless wind speed sensor network measurement system (WWSSN) was used to measure the wind field of an Unmanned Gasoline Engine Single-Rotor Helicopter (UGESRH). The flight speed of UGESRH was set to 3 m/s, the operating load was 3.75 kg, and the flying heights tested were 9, 8, 7, and 6 m respectively. The measured wind directions of the WWSSN included parallel to the direction of male parent ridge (X), perpendicular to the direction of male parent ridge (Y), and the vertical direction (H). The test results showed that the wind speed value is VX>VY>VZ, and the wind in direction X is more useful to the supplementary pollination. As the flight altitude decreased, the width of the wind field increased; at operating heights of 6-8 m, the maximum wind field width at wind grade 3 was more than 9 m; when the operating height reached 9 m, the wind field width at wind grade 3 decreased to 4 m. Considering all the various factors together, including the operating efficiency and flight security, a flight height of 7 m is suggested based on the UGESRH— Z3 model unmanned helicopter that we used. The test results also showed that the critical forward wind speed is very small when the UGESRH operates in a headwind, compare with its flight at the downwind direction. Therefore, operation in a headwind is not suggested while using UGESRH to conduct supplementary pollination.