农业工程学报
農業工程學報
농업공정학보
2013年
4期
110-117
,共8页
土壤水分%生长%作物%土壤盐分%改进模拟%SWAP%EPIC
土壤水分%生長%作物%土壤鹽分%改進模擬%SWAP%EPIC
토양수분%생장%작물%토양염분%개진모의%SWAP%EPIC
soil moisture%growth%crops%soil salt%modified modeling%SWAP%EPIC
合理定量描述土壤水盐动态及作物生长过程对于干旱灌区制定适宜的农业用水措施具有重要意义.该文以SWAP(soil water atmosphere plant)模型为基础,采用变活动节点法实现了对土壤融化期的水盐运移模拟,并在根系吸水计算中引入了基于 S 形函数的水盐胁迫计算方法,以修正原 SWAP 模型对根系吸水的模拟.进一步嵌入了参数与输入数据较少且可以模拟作物生长过程及实际产量的 EPIC(environmental policy integrated calculator)作物生长模型,构建了改进的农田尺度土壤水盐动态与作物生长耦合模拟模型— SWAP-EPIC.分别采用宁夏惠农灌区春小麦和春玉米田间试验数据,对 SWAP-EPIC 模型田间适用性进行了检验.对比分析各层土壤水分与盐分浓度、作物生长指标(叶面积指数、地上部生物量)的模拟值与实测值,结果表明:春小麦和春玉米试验中土壤水分的平均相对误差MRE 和均方根误差 RMSE 均接近于0且模型 Nash 效率系数 NSE 值趋近于1,水分模块模拟精度较高,盐分浓度模拟存在略微差异但总体上一致性较好,并且作物生长指标匹配良好;同时,模拟的产量和蒸散发均较为接近实际值,春小麦和春玉米产量模拟相对误差分别为4.9%和3.3%.综上,该文改进的 SWAP-EPIC 模型可良好地应用于寒旱区农田尺度土壤水盐运移与作物生长耦合模拟.
閤理定量描述土壤水鹽動態及作物生長過程對于榦旱灌區製定適宜的農業用水措施具有重要意義.該文以SWAP(soil water atmosphere plant)模型為基礎,採用變活動節點法實現瞭對土壤融化期的水鹽運移模擬,併在根繫吸水計算中引入瞭基于 S 形函數的水鹽脅迫計算方法,以脩正原 SWAP 模型對根繫吸水的模擬.進一步嵌入瞭參數與輸入數據較少且可以模擬作物生長過程及實際產量的 EPIC(environmental policy integrated calculator)作物生長模型,構建瞭改進的農田呎度土壤水鹽動態與作物生長耦閤模擬模型— SWAP-EPIC.分彆採用寧夏惠農灌區春小麥和春玉米田間試驗數據,對 SWAP-EPIC 模型田間適用性進行瞭檢驗.對比分析各層土壤水分與鹽分濃度、作物生長指標(葉麵積指數、地上部生物量)的模擬值與實測值,結果錶明:春小麥和春玉米試驗中土壤水分的平均相對誤差MRE 和均方根誤差 RMSE 均接近于0且模型 Nash 效率繫數 NSE 值趨近于1,水分模塊模擬精度較高,鹽分濃度模擬存在略微差異但總體上一緻性較好,併且作物生長指標匹配良好;同時,模擬的產量和蒸散髮均較為接近實際值,春小麥和春玉米產量模擬相對誤差分彆為4.9%和3.3%.綜上,該文改進的 SWAP-EPIC 模型可良好地應用于寒旱區農田呎度土壤水鹽運移與作物生長耦閤模擬.
합리정량묘술토양수염동태급작물생장과정대우간한관구제정괄의적농업용수조시구유중요의의.해문이SWAP(soil water atmosphere plant)모형위기출,채용변활동절점법실현료대토양융화기적수염운이모의,병재근계흡수계산중인입료기우 S 형함수적수염협박계산방법,이수정원 SWAP 모형대근계흡수적모의.진일보감입료삼수여수입수거교소차가이모의작물생장과정급실제산량적 EPIC(environmental policy integrated calculator)작물생장모형,구건료개진적농전척도토양수염동태여작물생장우합모의모형— SWAP-EPIC.분별채용저하혜농관구춘소맥화춘옥미전간시험수거,대 SWAP-EPIC 모형전간괄용성진행료검험.대비분석각층토양수분여염분농도、작물생장지표(협면적지수、지상부생물량)적모의치여실측치,결과표명:춘소맥화춘옥미시험중토양수분적평균상대오차MRE 화균방근오차 RMSE 균접근우0차모형 Nash 효솔계수 NSE 치추근우1,수분모괴모의정도교고,염분농도모의존재략미차이단총체상일치성교호,병차작물생장지표필배량호;동시,모의적산량화증산발균교위접근실제치,춘소맥화춘옥미산량모의상대오차분별위4.9%화3.3%.종상,해문개진적 SWAP-EPIC 모형가량호지응용우한한구농전척도토양수염운이여작물생장우합모의.
The quantitative description of soil water flow, solute transport and crop growth processes at field scale is significant for the decision-making of appropriate water use practices in arid irrigation districts. In this study, a modified agro-hydrological model (SWAP-EPIC) for coupled simulation of soil water flow, solute transport and crop growth was developed based on SWAP (soil water atmosphere plant) model and EPIC (environmental policy integrated calculator) crop growth model. The variable active-node method was adopted into the original SWAP model for reasonably simulating the soil water and solute transport processes during soil thawing period. Additionally, the S-shaped osmotic head-dependent functions for describing water and salt stress were also introduced. Further, the EPIC crop growth model, which could simulate the crop growth process and actual crop yield with moderate data input and parameters, was coupled into the SWAP model. Then the field applicability of SWAP-EPIC model was respectively tested using the field experiment data of spring wheat and spring maize at Huinong experimental site in Ningxia. The simulated and observed soil moisture, salinity concentration, and crop growth indicator (leaf area index and dry above-ground biomass) were compared for spring wheat and spring maize. The results showed that the soil moisture was matched very well, with MRE (mean relative error) and RMSE (root mean square error) close to zero and NSE (NSE and Sutcliffe model efficiency) approached to one. The simulated and observed salinity concentration showed an agreement with some slight discrepancy. The simulated LAI and above-ground biomass both matched well with observed ones. Meanwhile, the simulated crop yield was also close to the observations, with relative errors of 4.9% for spring wheat, and 3.3% for spring maize. The results indicated that the modified model (SWAP-EPIC) could be efficiently used to simulate the soil water and salt dynamics, crop growth, and their relationships at field scale.