农业工程学报
農業工程學報
농업공정학보
2013年
6期
82-90
,共9页
束士杰%刘朝顺%施润和%高炜
束士傑%劉朝順%施潤和%高煒
속사걸%류조순%시윤화%고위
通量%卡尔曼滤波%潜热%通用陆面模式%陆面数据同化%观测误差
通量%卡爾曼濾波%潛熱%通用陸麵模式%陸麵數據同化%觀測誤差
통량%잡이만려파%잠열%통용륙면모식%륙면수거동화%관측오차
flux%Kalman filter%latent heat%Community Land Model%land surface data assimilation%observational error
地表水热通量是研究地表能量转换与水文过程中的重要参数,本文借助通用陆面模式CLM3.0(Community Land Model 3.0)为动力框架,利用集合卡尔曼滤波作为同化算法构建单站点的地表水热通量同化系统,并利用Ameriflux通量观测网上Chestnut Ridge、ARM SGP Main以及Tonzi Ranch三个站点的通量观测数据进行直接同化地表水热通量试验.结果表明,在三种不同下垫面下,RMSE 直接同化水热通量能够很好地改善地表总水热通量的估算效果.经过同化通量观测值,模式输出的通量值的RMSE均有减小.在代表农田下垫面的ARM SGP Main站,感热通量的RMSE由67.49 W/m2下降至14.07 W/m2,潜热通量的RMSE由70.07 W/m2下降至14.35 W/m2;在代表森林下垫面的Chestnut Ridge站,感热通量的RMSE由82.56 W/m2下降至48.56 W/m2,潜热通量的RMSE由42.99 W/m2下降至38.92 W/m2;在代表草地下垫面的Tonzi Ranch站,感热通量的RMSE由62.99 W/m2下降至17.85 W/m2,潜热通量的RMSE由44.76 W/m2下降至36.01 W/m2.相对于通过同化地表温度和湿度间接改善地表水热通量预报的研究结果,直接同化地表水热通量的结果好于前者.但值得注意的是,针对集合同化方法,不同初始场误差、观测误差和大气强迫数据误差的扰动强度都会对同化结果造成影响.从同化系统对3种误差的敏感性分析结果来看:观测误差的影响最大且减小观测误差能够减小同化后的RMSE值,估计观测误差的方法是否合理会直接影响同化结果的好坏;初始场误差对同化后的RMSE值影响最小;另外,增加大气强迫数据误差和初始场误差能减小同化后的RMSE值.
地錶水熱通量是研究地錶能量轉換與水文過程中的重要參數,本文藉助通用陸麵模式CLM3.0(Community Land Model 3.0)為動力框架,利用集閤卡爾曼濾波作為同化算法構建單站點的地錶水熱通量同化繫統,併利用Ameriflux通量觀測網上Chestnut Ridge、ARM SGP Main以及Tonzi Ranch三箇站點的通量觀測數據進行直接同化地錶水熱通量試驗.結果錶明,在三種不同下墊麵下,RMSE 直接同化水熱通量能夠很好地改善地錶總水熱通量的估算效果.經過同化通量觀測值,模式輸齣的通量值的RMSE均有減小.在代錶農田下墊麵的ARM SGP Main站,感熱通量的RMSE由67.49 W/m2下降至14.07 W/m2,潛熱通量的RMSE由70.07 W/m2下降至14.35 W/m2;在代錶森林下墊麵的Chestnut Ridge站,感熱通量的RMSE由82.56 W/m2下降至48.56 W/m2,潛熱通量的RMSE由42.99 W/m2下降至38.92 W/m2;在代錶草地下墊麵的Tonzi Ranch站,感熱通量的RMSE由62.99 W/m2下降至17.85 W/m2,潛熱通量的RMSE由44.76 W/m2下降至36.01 W/m2.相對于通過同化地錶溫度和濕度間接改善地錶水熱通量預報的研究結果,直接同化地錶水熱通量的結果好于前者.但值得註意的是,針對集閤同化方法,不同初始場誤差、觀測誤差和大氣彊迫數據誤差的擾動彊度都會對同化結果造成影響.從同化繫統對3種誤差的敏感性分析結果來看:觀測誤差的影響最大且減小觀測誤差能夠減小同化後的RMSE值,估計觀測誤差的方法是否閤理會直接影響同化結果的好壞;初始場誤差對同化後的RMSE值影響最小;另外,增加大氣彊迫數據誤差和初始場誤差能減小同化後的RMSE值.
지표수열통량시연구지표능량전환여수문과정중적중요삼수,본문차조통용륙면모식CLM3.0(Community Land Model 3.0)위동력광가,이용집합잡이만려파작위동화산법구건단참점적지표수열통량동화계통,병이용Ameriflux통량관측망상Chestnut Ridge、ARM SGP Main이급Tonzi Ranch삼개참점적통량관측수거진행직접동화지표수열통량시험.결과표명,재삼충불동하점면하,RMSE 직접동화수열통량능구흔호지개선지표총수열통량적고산효과.경과동화통량관측치,모식수출적통량치적RMSE균유감소.재대표농전하점면적ARM SGP Main참,감열통량적RMSE유67.49 W/m2하강지14.07 W/m2,잠열통량적RMSE유70.07 W/m2하강지14.35 W/m2;재대표삼림하점면적Chestnut Ridge참,감열통량적RMSE유82.56 W/m2하강지48.56 W/m2,잠열통량적RMSE유42.99 W/m2하강지38.92 W/m2;재대표초지하점면적Tonzi Ranch참,감열통량적RMSE유62.99 W/m2하강지17.85 W/m2,잠열통량적RMSE유44.76 W/m2하강지36.01 W/m2.상대우통과동화지표온도화습도간접개선지표수열통량예보적연구결과,직접동화지표수열통량적결과호우전자.단치득주의적시,침대집합동화방법,불동초시장오차、관측오차화대기강박수거오차적우동강도도회대동화결과조성영향.종동화계통대3충오차적민감성분석결과래간:관측오차적영향최대차감소관측오차능구감소동화후적RMSE치,고계관측오차적방법시부합리회직접영향동화결과적호배;초시장오차대동화후적RMSE치영향최소;령외,증가대기강박수거오차화초시장오차능감소동화후적RMSE치.
Water and heat fluxes exchange between biosphere and bottom atmosphere are indispensable parts in understanding the surface energy conversion and hydrological cycle processes happening on the land surface. Estimation and prediction of fluxes have immense research significance in fields of environmental protection, agricultural production and climate prediction. Land surface model is a powerful tool to obtain space-time continuous fluxes despite its poor simulation accuracy. The state-of-the-art data assimilation method provides a way to solve this problem. With the help of the offline version of Community Land Model CLM3.0 as a dynamic framework, we use the Ensemble Kalman Filter assimilation algorithm to build a single-site surface water and heat fluxes assimilation system. The algorithm perform an ensemble simulation to estimate initial condition error covariance and observational error covariance for the objective dynamic model and analyze background diagnostic outputs by calculating a weighted mean with observations. Perturbations on surface initial condition, atmospheric forcing data and observations are generated by a random sampling strategy based on the supposition of normal distribution with a priori mean and standard deviation for all variables. Data from three flux observing sites from Ameriflux flux observational network (Chestnut Ridge, ARM SGP Main and Tonzi Ranch) which stand for three different land surface conditions are engaged in parallel experiments to test the system and evaluate the effectiveness of flux assimilation under the framework of land model. Before processing further experiment, an optimal ensemble size was selected by evaluating outputs of latent heat from models with different ensemble size RMSE. The results of parallel experiments showed that direct assimilation of sensible and latent heat fluxes can improve the estimates of total surface sensible and latent heat fluxes in all three types of underlying land surface condition. In ARM SGP Main site, a typical case for cropland ground type, RMSE of sensible heat flux decreased from 67.49W/m2 to 14.07 W/m2 and that of latent heat flux decreased from 70.07 W/m2 to 14.35 W/m2. In Chestnut Ridge site that stands for forestry, RMSE of sensible heat flux dropped from 82.56 W/m2 to 48.56 W/m2 and that of latent heat flux fell from 42.99 W/m2 to 38.92 W/m2, respectively. Tonzi Ranch, a grassland site, RMSE in is also diminished by assimilating in situ observations with decrements of 45.14W/m2 for sensible heat flux and 8.75 W/m2 for latent heat flux. Furthermore, by comparing the results we gained above with mainstream study that focusing on assimilation of surface temperature and humidity to indirectly improve the fluxes prediction, we conclude that under the dynamic framework of community land model the flux outputs from direct assimilation model are better than those from surface state assimilation model. It is noteworthy that the accuracy of observational error estimation will directly affect the assimilation results though errors from initial condition, observation and atmospheric forcing will make contributions simultaneously.