农业工程学报
農業工程學報
농업공정학보
2013年
6期
166-176
,共11页
黄敬峰%陈拉%王晶%王秀珍
黃敬峰%陳拉%王晶%王秀珍
황경봉%진랍%왕정%왕수진
遥感%不确定性分析%分类%可视化%水稻种植面积
遙感%不確定性分析%分類%可視化%水稻種植麵積
요감%불학정성분석%분류%가시화%수도충식면적
remote sensing%uncertainty analysis%classification%visualization%rice planting area
利用研究区地物类别亚米级GPS详查数据及TM影像光谱数据,模拟生成1 m分辨率的遥感模拟影像.用3种非参数分类法(最临近法KNN、误差后向传播神经网络BPN,模糊自适应网络FUZZY ARTMAP)和一种参数分类法(最大似然法MLC)对研究区TM影像进行硬分类估算水稻面积;还采用BPN全模糊分类、BPN和KNN模糊分类、抽象级结合和测量级结合的多分类器结合方法对遥感影像进行分类估算水稻面积;采用最多数法则的尺度扩展算法,实现由3 m空间分辨率参考图提取30 m空间分辨率影像像元纯度信息,讨论混合像元问题对遥感影像分类精度的影响.结果表明:非参数分类法精度均高于参数分类法,3种非参数分类法之间的差异较小,用最大似然法估算水稻面积的用户精度最高,用K最临近值分类法估算水稻面积的生产者精度最高;水稻类全模糊分类法的面积和真实面积最为接近,水稻类像元内的面积估测和真实面积无极显著差异;多分类器结合的分类法无论采用投票法还是测量级方法都能提高分类的总精度,能够提高水稻类面积提取的精度;研究区在30 m空间分辨率的情况下,各类别分类总精度、Kappa 系数随像元纯度升高而升高,4种硬分类方法没有对混合像元的分类表现出特别强的能力.本研究最终制作出分类影像像元的分类结果图、分类最大概率值、熵值图和水稻类概率值等4张图层,构成了对研究区分类结果不确定性的空间分布图不确定性图层,为采取进一步降低不确定性的措施提供了线索.
利用研究區地物類彆亞米級GPS詳查數據及TM影像光譜數據,模擬生成1 m分辨率的遙感模擬影像.用3種非參數分類法(最臨近法KNN、誤差後嚮傳播神經網絡BPN,模糊自適應網絡FUZZY ARTMAP)和一種參數分類法(最大似然法MLC)對研究區TM影像進行硬分類估算水稻麵積;還採用BPN全模糊分類、BPN和KNN模糊分類、抽象級結閤和測量級結閤的多分類器結閤方法對遙感影像進行分類估算水稻麵積;採用最多數法則的呎度擴展算法,實現由3 m空間分辨率參攷圖提取30 m空間分辨率影像像元純度信息,討論混閤像元問題對遙感影像分類精度的影響.結果錶明:非參數分類法精度均高于參數分類法,3種非參數分類法之間的差異較小,用最大似然法估算水稻麵積的用戶精度最高,用K最臨近值分類法估算水稻麵積的生產者精度最高;水稻類全模糊分類法的麵積和真實麵積最為接近,水稻類像元內的麵積估測和真實麵積無極顯著差異;多分類器結閤的分類法無論採用投票法還是測量級方法都能提高分類的總精度,能夠提高水稻類麵積提取的精度;研究區在30 m空間分辨率的情況下,各類彆分類總精度、Kappa 繫數隨像元純度升高而升高,4種硬分類方法沒有對混閤像元的分類錶現齣特彆彊的能力.本研究最終製作齣分類影像像元的分類結果圖、分類最大概率值、熵值圖和水稻類概率值等4張圖層,構成瞭對研究區分類結果不確定性的空間分佈圖不確定性圖層,為採取進一步降低不確定性的措施提供瞭線索.
이용연구구지물유별아미급GPS상사수거급TM영상광보수거,모의생성1 m분변솔적요감모의영상.용3충비삼수분류법(최림근법KNN、오차후향전파신경망락BPN,모호자괄응망락FUZZY ARTMAP)화일충삼수분류법(최대사연법MLC)대연구구TM영상진행경분류고산수도면적;환채용BPN전모호분류、BPN화KNN모호분류、추상급결합화측량급결합적다분류기결합방법대요감영상진행분류고산수도면적;채용최다수법칙적척도확전산법,실현유3 m공간분변솔삼고도제취30 m공간분변솔영상상원순도신식,토론혼합상원문제대요감영상분류정도적영향.결과표명:비삼수분류법정도균고우삼수분류법,3충비삼수분류법지간적차이교소,용최대사연법고산수도면적적용호정도최고,용K최림근치분류법고산수도면적적생산자정도최고;수도류전모호분류법적면적화진실면적최위접근,수도류상원내적면적고측화진실면적무겁현저차이;다분류기결합적분류법무론채용투표법환시측량급방법도능제고분류적총정도,능구제고수도류면적제취적정도;연구구재30 m공간분변솔적정황하,각유별분류총정도、Kappa 계수수상원순도승고이승고,4충경분류방법몰유대혼합상원적분류표현출특별강적능력.본연구최종제작출분류영상상원적분류결과도、분류최대개솔치、적치도화수도류개솔치등4장도층,구성료대연구구분류결과불학정성적공간분포도불학정성도층,위채취진일보강저불학정성적조시제공료선색.
Rice is the staple food for over half of the world’s population and two-thirds of the population of China. One of the main methods to implement an estimate of the planting area is to classify an image of the study area. Systematic quality assessment and some quantitative researches have been made on uncertainties in rice area estimation using remote sensing data. In this paper, sub-meter GPS data from a field campaign and TM image of study area were combined to obtain 1m resolution sub-pixels of simulated images. Maximum Likelihood Classifier(MLC), K-Nearest Neighbors (KNN), BP neural network (BPN) and Fuzzy ARTMAP neural network (FUZZY ARTMAP) were used as hard classification approaches to classify the TM image of the study area. Classification results showed that the classification precision of all non-parametric approaches (KNN,BPN and FUZZY ARTMAP) were higher than that of parametric approach (MLC). The differences of overall accuracy between these three non-parameters classifications were small. As for rice area, it’s better to choose MLC to get higher User’s Accuracy, and choose KNN to get higher Producer’s Accuracy. Full fuzzy BPN, partial fuzzy BPN and KNN classifiers were used to estimate area of classes in sub-pixels of simulated and TM images. The accuracies of area estimation by full fuzzy BPN classifier were significantly higher than these by partial fuzzy BPN and KNN classifiers. The correlation coefficient between the predicted area and true area of sub-pixels was not suitable in accuracy assessment for fuzzy classification, but a paired t-test could be used to assess well accuracy of area estimation. Full fuzzy classifiers have advantages of selecting eligible and enough training samples over partial fuzzy classifiers and enhance classification precision. But classification results failed to offer different categories of each pixel in space in the location information. The combined multiple classifiers either in voting mode or in measuring mode showed capacities to enhance the overall classification uncertainty in this study. It can help to improve the precision of the rice area extraction to some extent. An approach to analyzing the mixing degree of pixels was proposed in this study. The mixing degree of pixels of 30m resolution TM image was calculated by up scaling thematic map on majority rule in Matlab. As far as the condition of rice growing regions in southern China is concerned, the problem of mixed pixel is much more severe for commonly used images like TM images. And the classification results demonstrated that the classification precision decreased with the pureness of pixels and four classifiers showed no difference in capacity to classify mixing pixels. Based on Probability Vector which was available to BPN and KNN classifiers, the maps of maximum probability, entropy of all pixels and probability of pixels with rice label were made to represent uncertainties of classification for the TM image of the study area. These maps with the traditional classification map can transfer not only results of classification but also information of spatial variation of classification uncertainty to users.