热带气象学报
熱帶氣象學報
열대기상학보
2012年
6期
888-896
,共9页
蒋迪%黄菲%郝光华%黄健%吕卫华
蔣迪%黃菲%郝光華%黃健%呂衛華
장적%황비%학광화%황건%려위화
海洋气象学%南海土台风%合成%热通量
海洋氣象學%南海土檯風%閤成%熱通量
해양기상학%남해토태풍%합성%열통량
marine meteorology%SCS local typhoon%composite%heat flux
利用1985—2007年西北太平洋热带气旋(TC)资料,定义生成于南海范围内并且发展强度达到热带风暴(TS)等级及以上的热带气旋为南海土台风,统计了南海土台风的季节演变特征,发现南海生成的 TC 约有68%发展成为土台风,其强度普遍较弱且与 TC 生成纬度和路径均有关.其频数的季节变化呈双峰结构,5月和7—9月是南海土台风的高发期.结合同期美国伍兹霍尔海洋研究所的1°×1°客观分析海气通量(WHOI_OAFlux)日平均资料,分析了南海土台风生成及发展各阶段的海气热通量分布特征.结果表明:南海土台风形成过程中,海洋向大气释放的热通量逐日递增,台风眼南侧的海洋为台风形成提供主要能量来源,随着台风发展热通量高值区都沿顺时针方向向台风北侧传播,体现了台风外围涡旋罗斯贝波的能量频散特征,土台风形成后,热通量的加强不再明显.在土台风整个形成及发展过程中,净热通量、潜热通量和感热通量三者的变化较为一致,以潜热对净热的贡献为主,最大热量交换位于台风移动方向的南半圆,可能与南海西南季风作用有关.
利用1985—2007年西北太平洋熱帶氣鏇(TC)資料,定義生成于南海範圍內併且髮展彊度達到熱帶風暴(TS)等級及以上的熱帶氣鏇為南海土檯風,統計瞭南海土檯風的季節縯變特徵,髮現南海生成的 TC 約有68%髮展成為土檯風,其彊度普遍較弱且與 TC 生成緯度和路徑均有關.其頻數的季節變化呈雙峰結構,5月和7—9月是南海土檯風的高髮期.結閤同期美國伍玆霍爾海洋研究所的1°×1°客觀分析海氣通量(WHOI_OAFlux)日平均資料,分析瞭南海土檯風生成及髮展各階段的海氣熱通量分佈特徵.結果錶明:南海土檯風形成過程中,海洋嚮大氣釋放的熱通量逐日遞增,檯風眼南側的海洋為檯風形成提供主要能量來源,隨著檯風髮展熱通量高值區都沿順時針方嚮嚮檯風北側傳播,體現瞭檯風外圍渦鏇囉斯貝波的能量頻散特徵,土檯風形成後,熱通量的加彊不再明顯.在土檯風整箇形成及髮展過程中,淨熱通量、潛熱通量和感熱通量三者的變化較為一緻,以潛熱對淨熱的貢獻為主,最大熱量交換位于檯風移動方嚮的南半圓,可能與南海西南季風作用有關.
이용1985—2007년서북태평양열대기선(TC)자료,정의생성우남해범위내병차발전강도체도열대풍폭(TS)등급급이상적열대기선위남해토태풍,통계료남해토태풍적계절연변특정,발현남해생성적 TC 약유68%발전성위토태풍,기강도보편교약차여 TC 생성위도화로경균유관.기빈수적계절변화정쌍봉결구,5월화7—9월시남해토태풍적고발기.결합동기미국오자곽이해양연구소적1°×1°객관분석해기통량(WHOI_OAFlux)일평균자료,분석료남해토태풍생성급발전각계단적해기열통량분포특정.결과표명:남해토태풍형성과정중,해양향대기석방적열통량축일체증,태풍안남측적해양위태풍형성제공주요능량래원,수착태풍발전열통량고치구도연순시침방향향태풍북측전파,체현료태풍외위와선라사패파적능량빈산특정,토태풍형성후,열통량적가강불재명현.재토태풍정개형성급발전과정중,정열통량、잠열통량화감열통량삼자적변화교위일치,이잠열대정열적공헌위주,최대열량교환위우태풍이동방향적남반원,가능여남해서남계풍작용유관.
A South China Sea (SCS) local typhoon (SLT) is defined as a tropical cyclone (TC) that forms within the SCS region and can reach the grade of tropical storm (TS) or above. The statistical features of the SLTs from 1985 to 2007 were analyzed first. It was found that the intensities of the TCs were relatively weak and about 68% of them could develop into TSs. The SLT intensity was associated with its genesis latitude as well as its track. The SLT frequency number presented a seasonal variation with two peaks in May and June through September. Based on the daily heat flux data from the Woods Hole Oceanographic Institution_Objectively Analyzed air-sea Fluxes (WHOI_OAFlux) in the same period, the air-sea exchange during the process of generation and development of the SLT was studied. Results showed that the heat fluxes released to the atmosphere were increasing significantly day by day before cyclogenesis. The ocean at the south to the TC center provided the main energy. Along with the development of SLT, the regions with larger heat fluxes spread clockwise to the north of TC, which reflected the energy dispersion property of vortex Rossby-waves in peripheral bands of TC. However, once the SLT was formed there were no more increments in the fluxes. During the whole process, the net heat, latent heat and sensible heat flux displayed a similar evolution when the latent heat made a main contribution to the net heat flux. The maximum air-sea heat exchange always locates at the left side of the TC moving direction, which may reflect influence of the SCS summer monsoon on TC structure.