石油勘探与开发
石油勘探與開髮
석유감탐여개발
PETROLEUM EXPLORATION AND DEVELOPMENT
2013年
2期
220-225
,共6页
魏建光%王小秋%陈海波%张权
魏建光%王小鞦%陳海波%張權
위건광%왕소추%진해파%장권
水平井%射孔完井%井筒复杂流动%压降规律
水平井%射孔完井%井筒複雜流動%壓降規律
수평정%사공완정%정통복잡류동%압강규률
horizontal well%perforated completion%wellbore complex flow%pressure drop rule
采用外径139.7 mm的壁面打孔套管模拟射孔完井水平井筒,通过模拟实验研究射孔参数及壁面注入比对各种压降的影响规律.实验结果表明:①随着射孔密度、射孔孔径、射孔相位的增大,壁面摩擦压降和总压降均增大,混合压降减小.②射孔套管出口主流雷诺数相同时,随着壁面注入比的增大,总压降和混合压降均增大.壁面注入比小于临界值(本研究条件下为0.05%~0.10%)时,混合压降小于零;壁面注入比大于临界值时,混合压降大于零.壁面注入比小于0.10%时,加速度压降可以忽略;壁面注入比大于0.10%时,加速度压降随壁面注入比的增大而显著增加.③随着壁面注入比的增大,壁面摩擦压降占总压降的比例逐渐减小,加速度压降占总压降的比例逐渐增大.壁面注入比小于1.00%时,混合压降占总压降的比例随壁面注入比的增大而增大;壁面注入比大于1.00%时,混合压降占总压降的比例基本保持不变.图17参18
採用外徑139.7 mm的壁麵打孔套管模擬射孔完井水平井筒,通過模擬實驗研究射孔參數及壁麵註入比對各種壓降的影響規律.實驗結果錶明:①隨著射孔密度、射孔孔徑、射孔相位的增大,壁麵摩抆壓降和總壓降均增大,混閤壓降減小.②射孔套管齣口主流雷諾數相同時,隨著壁麵註入比的增大,總壓降和混閤壓降均增大.壁麵註入比小于臨界值(本研究條件下為0.05%~0.10%)時,混閤壓降小于零;壁麵註入比大于臨界值時,混閤壓降大于零.壁麵註入比小于0.10%時,加速度壓降可以忽略;壁麵註入比大于0.10%時,加速度壓降隨壁麵註入比的增大而顯著增加.③隨著壁麵註入比的增大,壁麵摩抆壓降佔總壓降的比例逐漸減小,加速度壓降佔總壓降的比例逐漸增大.壁麵註入比小于1.00%時,混閤壓降佔總壓降的比例隨壁麵註入比的增大而增大;壁麵註入比大于1.00%時,混閤壓降佔總壓降的比例基本保持不變.圖17參18
채용외경139.7 mm적벽면타공투관모의사공완정수평정통,통과모의실험연구사공삼수급벽면주입비대각충압강적영향규률.실험결과표명:①수착사공밀도、사공공경、사공상위적증대,벽면마찰압강화총압강균증대,혼합압강감소.②사공투관출구주류뢰낙수상동시,수착벽면주입비적증대,총압강화혼합압강균증대.벽면주입비소우림계치(본연구조건하위0.05%~0.10%)시,혼합압강소우령;벽면주입비대우림계치시,혼합압강대우령.벽면주입비소우0.10%시,가속도압강가이홀략;벽면주입비대우0.10%시,가속도압강수벽면주입비적증대이현저증가.③수착벽면주입비적증대,벽면마찰압강점총압강적비례축점감소,가속도압강점총압강적비례축점증대.벽면주입비소우1.00%시,혼합압강점총압강적비례수벽면주입비적증대이증대;벽면주입비대우1.00%시,혼합압강점총압강적비례기본보지불변.도17삼18
A full size perforated casing of 139.7 mm in external diameter was adopted to simulate the horizontal wellbore. The influences of perforation parameters and injection rate on the pressure drop in horizontal wells were investigated by experiments. The results show that: (1) With the increase of perforation density, perforation diameter and perforation phase, both the frictional pressure drop and the total pressure drop increase and the mixture pressure drop decreases. (2) When the mainstream Reynolds number at the perforated casing exit remains constant, with the increase of injection rate, the total pressure drop and mixing pressure drop increase. When the injection rate is less than the critical injection rate (0.05%-0.10%under the study conditions), the mixing pressure drop is less than 0. When the injection rate is greater than the critical injection rate, the mixing pressure drop is greater than 0. The acceleration pressure drop can be neglected when the injection rate is less than 0.10%, otherwise the acceleration pressure drop rises significantly with the increase of injection rate. (3) With the increase of injection rate, the proportion of frictional pressure drop to total pressure drop decreases while that of acceleration pressure drop to total pressure drop increases. When the injection rate is less than 1.00%, the proportion of mixing pressure drop to total pressure drop tends to rise with the increase of injection rate. When the injection rate is greater than 1.00%, the proportion of mixing pressure drop to total pressure drop almost remains unchanged.