电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2013年
1期
127-135
,共9页
张步涵%邵剑%吴小珊%王魁
張步涵%邵劍%吳小珊%王魁
장보함%소검%오소산%왕괴
机组组合%场景树%马尔科夫链原理%机会约束规划%离散粒子群算法
機組組閤%場景樹%馬爾科伕鏈原理%機會約束規劃%離散粒子群算法
궤조조합%장경수%마이과부련원리%궤회약속규화%리산입자군산법
unit commitment%scenario tree%Markov chain%chance-constrained programming%discrete particle swarm optimization
为了解决风电的随机波动性给含大规模风电场电力系统机组组合问题求解带来的影响,采用马尔科夫链原理描述风速变化的规律,并将它与场景树技术相结合,对风电的不确定性进行数学建模.同时基于机会约束规划建立了含风电场机组组合问题的随机数学模型,包含外层机组启停状态优化和内层机组间负荷经济分配两层优化子问题.在求解模型时,将离散粒子群算法(DPSO)与等微增率准则相结合,对两层优化问题进行交替迭代求解;同时提出开停机调整策略改善解的特性.对一个含风电场的10常规机组系统进行算例分析,验证了所提出数学模型和求解方法的合理性和有效性.
為瞭解決風電的隨機波動性給含大規模風電場電力繫統機組組閤問題求解帶來的影響,採用馬爾科伕鏈原理描述風速變化的規律,併將它與場景樹技術相結閤,對風電的不確定性進行數學建模.同時基于機會約束規劃建立瞭含風電場機組組閤問題的隨機數學模型,包含外層機組啟停狀態優化和內層機組間負荷經濟分配兩層優化子問題.在求解模型時,將離散粒子群算法(DPSO)與等微增率準則相結閤,對兩層優化問題進行交替迭代求解;同時提齣開停機調整策略改善解的特性.對一箇含風電場的10常規機組繫統進行算例分析,驗證瞭所提齣數學模型和求解方法的閤理性和有效性.
위료해결풍전적수궤파동성급함대규모풍전장전력계통궤조조합문제구해대래적영향,채용마이과부련원리묘술풍속변화적규률,병장타여장경수기술상결합,대풍전적불학정성진행수학건모.동시기우궤회약속규화건립료함풍전장궤조조합문제적수궤수학모형,포함외층궤조계정상태우화화내층궤조간부하경제분배량층우화자문제.재구해모형시,장리산입자군산법(DPSO)여등미증솔준칙상결합,대량층우화문제진행교체질대구해;동시제출개정궤조정책략개선해적특성.대일개함풍전장적10상규궤조계통진행산례분석,험증료소제출수학모형화구해방법적합이성화유효성.
In order to cope with the difficulties brought by the volatile and intermittent nature of wind power when solving the unit commitment problem with large-scale wind farms, the basic principles of Markov chain are adopted to describe the regularity of the change of wind speed, and used to model the uncertainty of wind power combining with scenario tree. And this paper presents a stochastic programming model based on chance-constrained programming, and the unit commitment problem is decomposed into two embedded optimization sub-problems: the unit on/off status schedule problem and the load economic dispatch problem. The two problems are solved alternately and iteratively by discrete particle swarm optimization (DPSO) and the equal incremental principle, and an adjusted strategy of units’ on/off status enhances the algorithm’s optimization performance. The results on a system with 10 thermal units and wind farms demonstrate the feasibility and effectiveness of the proposed model and algorithm. This work is supported by National High-tech R & D Program of China (863 Program) (No. 2011AA05A101).