井冈山大学学报(自然科学版)
井岡山大學學報(自然科學版)
정강산대학학보(자연과학판)
JOURNAL OF JINGGANGSHAN UNIVERSITY(SCIENCE AND TECHNOLOGY)
2013年
1期
11-16
,共6页
分数阶微分方程%积分三点边值问题%Krasnoselskii不动点理论%正解%存在性
分數階微分方程%積分三點邊值問題%Krasnoselskii不動點理論%正解%存在性
분수계미분방정%적분삼점변치문제%Krasnoselskii불동점이론%정해%존재성
fractional differential equations%three-point integral boundary value problems%Krasnoselskii fixed-point theory%positive solution%existence
研究了一类非线性分数阶微分方程的积分三点边值问题.利用Krasnoselskii不动点理论,获得了该问题至少存在一个正解的两个充分条件.这推广了整数阶微分方程的相应结果.
研究瞭一類非線性分數階微分方程的積分三點邊值問題.利用Krasnoselskii不動點理論,穫得瞭該問題至少存在一箇正解的兩箇充分條件.這推廣瞭整數階微分方程的相應結果.
연구료일류비선성분수계미분방정적적분삼점변치문제.이용Krasnoselskii불동점이론,획득료해문제지소존재일개정해적량개충분조건.저추엄료정수계미분방정적상응결과.
We study the three-point integral boundary value problems for nonlinear fractional differential equations. Based on the Krasnoselskii fixed-point theory, we obtain two sufficient conditions for the existence of at least one positive solution for this problem. These results extend the corresponding ones of ordinary differential equations of integer order.