计算机科学与探索
計算機科學與探索
계산궤과학여탐색
JOURNAL OF FRONTIERS OF COMPUTER SCIENCE & TECHNOLOGY
2013年
1期
92-96
,共5页
粗糙集%完全分配格%覆盖%不确定性映射%近似算子
粗糙集%完全分配格%覆蓋%不確定性映射%近似算子
조조집%완전분배격%복개%불학정성영사%근사산자
rough set%complete completely distributive lattice (CD lattice)%cover%uncertainty mapping%approximation operator
Pawlak近似算子具有多种推广形式.讨论了完全分配格上的近似算子.通过近似空间中的不确定性映射,分别引入了三种形式的上近似算子及下近似算子,讨论了它们的基本性质及其与已有近似算子之间的关系.研究结果表明,目前文献中出现的多种近似算子可以作为完全分配格上近似算子的特例.
Pawlak近似算子具有多種推廣形式.討論瞭完全分配格上的近似算子.通過近似空間中的不確定性映射,分彆引入瞭三種形式的上近似算子及下近似算子,討論瞭它們的基本性質及其與已有近似算子之間的關繫.研究結果錶明,目前文獻中齣現的多種近似算子可以作為完全分配格上近似算子的特例.
Pawlak근사산자구유다충추엄형식.토론료완전분배격상적근사산자.통과근사공간중적불학정성영사,분별인입료삼충형식적상근사산자급하근사산자,토론료타문적기본성질급기여이유근사산자지간적관계.연구결과표명,목전문헌중출현적다충근사산자가이작위완전분배격상근사산자적특례.
The generalization of Pawlak’s rough approximation operators is an important issue in rough set theory. This paper presents a new approach for the study of rough approximations on a complete completely distributive lattice (CD lattice). Based on the concept of uncertainty mappings, the paper constructs three pairs of upper and lower rough approximations, discusses their basic properties, and investigates the relationships among these rough approximations. It is pointed out that some well known approximation operators are special cases of the operators presented in this paper.