计算机技术与发展
計算機技術與髮展
계산궤기술여발전
COMPUTER TECHNOLOGY AND DEVELOPMENT
2013年
1期
234-236
,共3页
博弈论%人才培养%纳什均衡
博弈論%人纔培養%納什均衡
박혁론%인재배양%납십균형
game theory%talent training%Nash equilibrium
为了适应社会的需求及就业市场的变化,为人才的培养模式提供科学的定量化的方法.以就业为导向,通过对人才的培养与社会的需求进行博弈分析,并针对就业为小康型的群体,建立了人才培养模式的博弈模型;最后运用博弈论均衡理论,开发出该模型的求解算法.在学校培养和社会需求的限定条件下,温饱型就业者会随机选择学习消耗函数最小值的培养模式;小康型就业者培养模式的选择和社会努力水平在点(p*,e*)双方达到了博弈均衡,保证了最低收益.通过算法示例及对博弈模型结果的分析,说明了该模型和求解算法是科学可行的、有效的,对各种人才的培养均有一定的借鉴意义.
為瞭適應社會的需求及就業市場的變化,為人纔的培養模式提供科學的定量化的方法.以就業為導嚮,通過對人纔的培養與社會的需求進行博弈分析,併針對就業為小康型的群體,建立瞭人纔培養模式的博弈模型;最後運用博弈論均衡理論,開髮齣該模型的求解算法.在學校培養和社會需求的限定條件下,溫飽型就業者會隨機選擇學習消耗函數最小值的培養模式;小康型就業者培養模式的選擇和社會努力水平在點(p*,e*)雙方達到瞭博弈均衡,保證瞭最低收益.通過算法示例及對博弈模型結果的分析,說明瞭該模型和求解算法是科學可行的、有效的,對各種人纔的培養均有一定的藉鑒意義.
위료괄응사회적수구급취업시장적변화,위인재적배양모식제공과학적정양화적방법.이취업위도향,통과대인재적배양여사회적수구진행박혁분석,병침대취업위소강형적군체,건립료인재배양모식적박혁모형;최후운용박혁론균형이론,개발출해모형적구해산법.재학교배양화사회수구적한정조건하,온포형취업자회수궤선택학습소모함수최소치적배양모식;소강형취업자배양모식적선택화사회노력수평재점(p*,e*)쌍방체도료박혁균형,보증료최저수익.통과산법시례급대박혁모형결과적분석,설명료해모형화구해산법시과학가행적、유효적,대각충인재적배양균유일정적차감의의.
To meet the needs of society and job markets,there has provided a scientific quantitative approach for the talents training mode. It makes a game analysis between the talents training of universities and social needs with employment-oriented,and creates a universities students training mode's game model. Finally using equilibrium theory of game theory develops an algorithm of the model. The solution shows that within the constraints of universities' cultivation and job markets' needs,the would-be adequately-fed employers tend to adopt randomly the training pattern involving students' minimum energy consumption;the potential fairly well-off employers' choice of the rai-sing pattern and the society's effort level meet the balance in game at the point( p*,e* ),guarantee a minimum income. Algorithm ex-ample results show that the model is scientific,feasible and effective,there is a certain reference for the talents training of different kinds.