计算机技术与发展
計算機技術與髮展
계산궤기술여발전
COMPUTER TECHNOLOGY AND DEVELOPMENT
2013年
3期
53-55
,共3页
信任度%自适应%硬判决%合作感知
信任度%自適應%硬判決%閤作感知
신임도%자괄응%경판결%합작감지
credibility%adaptability%hard decision%cooperative sensing
由于认知网络内用户物理分布具有非均匀特性,各认知用户与相同主用户之间的距离及其信道环境存在较大差异,导致不同用户判决结果的可靠性程度不同.传统的硬融合算法往往忽视用户检测可靠性差异,同等对待所有本地判决,使得合作检测性能达不到最优.针对该问题,提出一种改进的基于K秩硬判决的多用户合作频谱感知算法.融合中心执行融合算法时,引入信任度区别对待各认知用户的本地判决,采用迭代方法,不断根据用户局部判决相对总判决的正确度,自适应更新信任度,并适时调整全局判决门限.算法简单有效,开销小.实验结果表明,该算法相比传统的K秩硬判决算法,具有更好的合作检测性能.
由于認知網絡內用戶物理分佈具有非均勻特性,各認知用戶與相同主用戶之間的距離及其信道環境存在較大差異,導緻不同用戶判決結果的可靠性程度不同.傳統的硬融閤算法往往忽視用戶檢測可靠性差異,同等對待所有本地判決,使得閤作檢測性能達不到最優.針對該問題,提齣一種改進的基于K秩硬判決的多用戶閤作頻譜感知算法.融閤中心執行融閤算法時,引入信任度區彆對待各認知用戶的本地判決,採用迭代方法,不斷根據用戶跼部判決相對總判決的正確度,自適應更新信任度,併適時調整全跼判決門限.算法簡單有效,開銷小.實驗結果錶明,該算法相比傳統的K秩硬判決算法,具有更好的閤作檢測性能.
유우인지망락내용호물리분포구유비균균특성,각인지용호여상동주용호지간적거리급기신도배경존재교대차이,도치불동용호판결결과적가고성정도불동.전통적경융합산법왕왕홀시용호검측가고성차이,동등대대소유본지판결,사득합작검측성능체불도최우.침대해문제,제출일충개진적기우K질경판결적다용호합작빈보감지산법.융합중심집행융합산법시,인입신임도구별대대각인지용호적본지판결,채용질대방법,불단근거용호국부판결상대총판결적정학도,자괄응경신신임도,병괄시조정전국판결문한.산법간단유효,개소소.실험결과표명,해산법상비전통적K질경판결산법,구유경호적합작검측성능.
Owing to the non-uniform feature of physical distribution of users in the cognitive network,the distance and channel condition between each cognitive user and the same primary user are quite different,resulting in different levels of detection reliability among differ-ent users. Traditional hard fusion algorithms tend to ignore the difference of detection reliability,equally treat all local decisions,making the cooperative detection performance beyond optimal. To solve this problem,present an improved cooperative spectrum sensing method which is based on K-rank hard judgment. In implementing the fusion algorithm,the fusion center introduces credibility to differentiate the way to treat different cognitive user's local judgment,adopts iterative method to update credibility based on the accuracy of the user's par-tial judgment relative to the total judgment,and timely adjusts the global decision threshold. The algorithm is simple and effective and low overhead is introduced. The experimental results show that compared with the traditional K rank hard decision algorithm,the improved al-gorithm achieves better cooperation detection performance.