物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2013年
1期
102-110
,共9页
羧甲基纤维素钠%多孔炭%氮掺杂%电容性能
羧甲基纖維素鈉%多孔炭%氮摻雜%電容性能
최갑기섬유소납%다공탄%담참잡%전용성능
Sodium carboxymethyl cel ulose%Porous carbon%Nitrogen doping%Capacitive performance
以羧甲基纤维素钠(NaCMC)为碳源,利用直接炭化工艺(无需进一步活化)制备多孔炭材料;然后,以CO(NH2)2为氮源,形成了氮掺杂多孔炭材料.氮的存在形式包括吡啶N、石墨N和吡咯N.实验结果表明,羧甲基纤维素钠与CO(NH2)2之间的配比可以有效控制氮存在形式、含量、样品的比表面积及孔的结构等.样品的电化学性能测试表明,氮掺杂后多孔炭材料的超电容性能得到了显著提升.以carbon-N-1:20为例,其比表面积可达858 m2·g-1,远高于未经氮掺杂carbon-blank的463 m2·g-1,其质量比电容则由94.0 F·g-1提高到了156.7 F·g-1.
以羧甲基纖維素鈉(NaCMC)為碳源,利用直接炭化工藝(無需進一步活化)製備多孔炭材料;然後,以CO(NH2)2為氮源,形成瞭氮摻雜多孔炭材料.氮的存在形式包括吡啶N、石墨N和吡咯N.實驗結果錶明,羧甲基纖維素鈉與CO(NH2)2之間的配比可以有效控製氮存在形式、含量、樣品的比錶麵積及孔的結構等.樣品的電化學性能測試錶明,氮摻雜後多孔炭材料的超電容性能得到瞭顯著提升.以carbon-N-1:20為例,其比錶麵積可達858 m2·g-1,遠高于未經氮摻雜carbon-blank的463 m2·g-1,其質量比電容則由94.0 F·g-1提高到瞭156.7 F·g-1.
이최갑기섬유소납(NaCMC)위탄원,이용직접탄화공예(무수진일보활화)제비다공탄재료;연후,이CO(NH2)2위담원,형성료담참잡다공탄재료.담적존재형식포괄필정N、석묵N화필각N.실험결과표명,최갑기섬유소납여CO(NH2)2지간적배비가이유효공제담존재형식、함량、양품적비표면적급공적결구등.양품적전화학성능측시표명,담참잡후다공탄재료적초전용성능득도료현저제승.이carbon-N-1:20위례,기비표면적가체858 m2·g-1,원고우미경담참잡carbon-blank적463 m2·g-1,기질량비전용칙유94.0 F·g-1제고도료156.7 F·g-1.
We demonstrate a direct carbonization method to prepare porous carbons as electrode materials without an activation process, using sodium carboxymethyl cel ulose (NaCMC) as the carbon source, which are further doped with varying mass ratios of nitrogen. From X-ray photoelectron data, the nitrogen species include pyridinic N, graphitic N, and pyrrolic N. The relative mass ratios of NaCMC and CO(NH2)2 affect the nature of the nitrogen species, dopant dosages as wel as specific surface areas and pore structures. The cyclic voltammetry and galvanostatic charge-discharge measurements in 6 mol·L-1 KOH aqueous solutions reveal that the specific surface areas and capacitive performances improve after nitrogen-doping. Taking carbon-N-1:20 as example, its SBET can reach 858 m2·g-1, which is higher than that of carbon-blank (463 m2·g-1) and the corresponding specific capacitance greatly improves from 94.0 to 156.7 F· g-1, respectively. The present carbons are excel ent electrode candidates for high-rate electrochemical capacitors.