物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2013年
1期
111-116
,共6页
李莉香%陶晶%耿新%安百钢*
李莉香%陶晶%耿新%安百鋼*
리리향%도정%경신%안백강*
碳纳米管%氮掺杂%聚苯胺%超级电容器
碳納米管%氮摻雜%聚苯胺%超級電容器
탄납미관%담참잡%취분알%초급전용기
Carbon nanotube%Nitrogen doping%Polyaniline%Supercapacitor
利用苯胺原位化学聚合合成聚苯胺包覆碳纳米管(CNTs),再炭化处理制备氮掺杂碳纳米管(NCNTs).激光拉曼(Raman)光谱和X射线光电子谱(XPS)分析及透射电镜(TEM)观察表明,苯胺包覆碳纳米管经炭化处理后,得到以碳纳米管为核、氮掺杂碳层为壳,具有核-壳结构的氮掺杂碳纳米管,而碳纳米管本征结构未遭破坏.研究表明,随着苯胺用量的增大,氮掺杂碳纳米管的氮掺杂碳层变厚,氮含量从7.06%(质量分数)增加到8.64%,而作为超级电容器电极材料,随着氮掺杂碳层厚度降低,氮掺杂碳纳米管在6 mol·L-1氢氧化钾电解液中的比容量从107 F·g-1增大到205 F·g-1,远高于原始碳纳米管10 F·g-1的比容量,且聚苯胺改性氮掺杂碳纳米管表现出较好的充放电循环性,经1000次充放电循环后仍保持初始容量的92.8%-97.1%,表明氮掺杂碳纳米管不仅通过表面氮杂原子引入大的法拉第电容和改善亲水性使电容量显著增大,其具有的核壳结构特征也使循环稳定性增强.
利用苯胺原位化學聚閤閤成聚苯胺包覆碳納米管(CNTs),再炭化處理製備氮摻雜碳納米管(NCNTs).激光拉曼(Raman)光譜和X射線光電子譜(XPS)分析及透射電鏡(TEM)觀察錶明,苯胺包覆碳納米管經炭化處理後,得到以碳納米管為覈、氮摻雜碳層為殼,具有覈-殼結構的氮摻雜碳納米管,而碳納米管本徵結構未遭破壞.研究錶明,隨著苯胺用量的增大,氮摻雜碳納米管的氮摻雜碳層變厚,氮含量從7.06%(質量分數)增加到8.64%,而作為超級電容器電極材料,隨著氮摻雜碳層厚度降低,氮摻雜碳納米管在6 mol·L-1氫氧化鉀電解液中的比容量從107 F·g-1增大到205 F·g-1,遠高于原始碳納米管10 F·g-1的比容量,且聚苯胺改性氮摻雜碳納米管錶現齣較好的充放電循環性,經1000次充放電循環後仍保持初始容量的92.8%-97.1%,錶明氮摻雜碳納米管不僅通過錶麵氮雜原子引入大的法拉第電容和改善親水性使電容量顯著增大,其具有的覈殼結構特徵也使循環穩定性增彊.
이용분알원위화학취합합성취분알포복탄납미관(CNTs),재탄화처리제비담참잡탄납미관(NCNTs).격광랍만(Raman)광보화X사선광전자보(XPS)분석급투사전경(TEM)관찰표명,분알포복탄납미관경탄화처리후,득도이탄납미관위핵、담참잡탄층위각,구유핵-각결구적담참잡탄납미관,이탄납미관본정결구미조파배.연구표명,수착분알용량적증대,담참잡탄납미관적담참잡탄층변후,담함량종7.06%(질량분수)증가도8.64%,이작위초급전용기전겁재료,수착담참잡탄층후도강저,담참잡탄납미관재6 mol·L-1경양화갑전해액중적비용량종107 F·g-1증대도205 F·g-1,원고우원시탄납미관10 F·g-1적비용량,차취분알개성담참잡탄납미관표현출교호적충방전순배성,경1000차충방전순배후잉보지초시용량적92.8%-97.1%,표명담참잡탄납미관불부통과표면담잡원자인입대적법랍제전용화개선친수성사전용량현저증대,기구유적핵각결구특정야사순배은정성증강.
Nitrogen-doped carbon nanotubes (NCNTs) were prepared by carbonization of polyaniline-coated CNTs that were synthesized by in situ polymerization of aniline on the CNT surface. The laser Raman spectroscopy, transmission electron microscope (TEM), and X-ray photoelectron spectroscopy (XPS) indicated that carbonization treatment of the polyaniline (PANI) coated CNTs produced NCNTs owning the core-shel structure of a nitrogen-doped carbon shel and a CNT core, without destroying the intrinsic CNT structure. By increasing the aniline amount, the N-doped layer of the NCNTs became thicker, and the amount of nitrogen doping increased from 7.06%to 8.64%(mass fraction). As the supercapacitor electrode material, the NCNTs capacitance in 6 mol·L-1 aqueous KOH solution increased from 107 to 205 F·g-1 as the N-doped layer thickness decreased, which was much higher than the capacitance of 10 F·g-1 for the pristine CNTs. Especial y, NCNT electrodes displayed good cyclability, maintaining 92.8%-97.1%of the initial capacitance after 1000 charge-discharge cycles. The high capacitance and good cyclability of the NCNTs as a supercapacitor electrode material can be attributed to the pseudo-Faradic capacitance and improved hydrophility contributed by the nitrogen functional groups and the core-shel structure of the NCNTs, respectively.