物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2013年
1期
205-211
,共7页
辉光放电电解%产气速率%电解液%乙醇%蒸汽鞘层%制氢
輝光放電電解%產氣速率%電解液%乙醇%蒸汽鞘層%製氫
휘광방전전해%산기속솔%전해액%을순%증기초층%제경
Glow discharge electrolysis%Gas generation rate%Electrolyte%Ethanol%Steam sheath%Hydrogen generation
在辉光放电分解乙醇制氢过程中,高能电子在反应中起到了最为关键的作用,非法拉第效应使得电流效率获得大幅度提升,产物产量远远高于理论产量.本文研究了乙醇水溶液辉光放电等离子体电解制氢的过程.实验研究发现,辉光放电分解乙醇水溶液的产物主要以H2和CO为主,还有少量的C2H4、CH4、O2和C2H6. H2体积分数能达到59%以上, CO为20%左右.通过对影响辉光放电的因素进行实验后发现:乙醇体积分数的大小不会影响辉光放电的伏安特性参数;电导率的提高会使‘Kel ogg区’收窄,同时使放电尽快进入辉光放电.此外,乙醇体积分数越高H2体积分数越低,产气速率在乙醇体积分数为30%和80%附近时达到极大值;提高放电电压和电导率对辉光放电的影响规律是相类似的,其实质都是增大了辉光放电加载在等离子鞘层两端的电压, H2体积分数基本不随二者的变化而变化,但提高溶液的电导率更有利于减少辉光放电引起的焦耳热.
在輝光放電分解乙醇製氫過程中,高能電子在反應中起到瞭最為關鍵的作用,非法拉第效應使得電流效率穫得大幅度提升,產物產量遠遠高于理論產量.本文研究瞭乙醇水溶液輝光放電等離子體電解製氫的過程.實驗研究髮現,輝光放電分解乙醇水溶液的產物主要以H2和CO為主,還有少量的C2H4、CH4、O2和C2H6. H2體積分數能達到59%以上, CO為20%左右.通過對影響輝光放電的因素進行實驗後髮現:乙醇體積分數的大小不會影響輝光放電的伏安特性參數;電導率的提高會使‘Kel ogg區’收窄,同時使放電儘快進入輝光放電.此外,乙醇體積分數越高H2體積分數越低,產氣速率在乙醇體積分數為30%和80%附近時達到極大值;提高放電電壓和電導率對輝光放電的影響規律是相類似的,其實質都是增大瞭輝光放電加載在等離子鞘層兩耑的電壓, H2體積分數基本不隨二者的變化而變化,但提高溶液的電導率更有利于減少輝光放電引起的焦耳熱.
재휘광방전분해을순제경과정중,고능전자재반응중기도료최위관건적작용,비법랍제효응사득전류효솔획득대폭도제승,산물산량원원고우이론산량.본문연구료을순수용액휘광방전등리자체전해제경적과정.실험연구발현,휘광방전분해을순수용액적산물주요이H2화CO위주,환유소량적C2H4、CH4、O2화C2H6. H2체적분수능체도59%이상, CO위20%좌우.통과대영향휘광방전적인소진행실험후발현:을순체적분수적대소불회영향휘광방전적복안특성삼수;전도솔적제고회사‘Kel ogg구’수착,동시사방전진쾌진입휘광방전.차외,을순체적분수월고H2체적분수월저,산기속솔재을순체적분수위30%화80%부근시체도겁대치;제고방전전압화전도솔대휘광방전적영향규률시상유사적,기실질도시증대료휘광방전가재재등리자초층량단적전압, H2체적분수기본불수이자적변화이변화,단제고용액적전도솔경유리우감소휘광방전인기적초이열.
High-energy electrons play the most important role in the decomposition of ethanol aqueous solutions under glow discharge plasma electrolysis (GDE). The non-Faradaic currents greatly improve, resulting in the actual gas production yield exceeding the theoretical yield. In this paper, we investigated a novel process of hydrogen generation from ethanol decomposition by GDE. The main gaseous products were H2 and CO;in addition to smal amounts of C2H4, CH4, O2, and C2H6. The H2 volume fraction was above 59%and CO was 20%. We conclude that voltages of points C and D (VC and VD) do not change with the electrolyte concentration, but the 'Kel ogg area' becomes narrower with increasing electrolyte conductivity and the glow discharge is easier to attain. In addition, with increasing ethanol volume fraction, the H2 volume fraction decreases. The maximum gas production rate occurred for ethanol volume fractions of 30%and 80%. Improving the discharge voltage and raising the electrolyte conductivity had the same effect on glow discharge plasma electrolysis as the voltage load at both ends of the plasma steam sheath increases. The H2 volume fraction remains the same upon varying the discharge voltage or electrolyte conductivity, but increasing the electrolyte conductivity is advantageous to reduce Joule heating effects caused by GDE.