物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2013年
2期
271-278
,共8页
刘瑞%滕波涛*%全洁丽%郎佳健%罗孟飞
劉瑞%滕波濤*%全潔麗%郎佳健%囉孟飛
류서%등파도*%전길려%랑가건%라맹비
氟化氢%α-AlF3(0001)%密度泛函理论%差分电荷密度%电子态密度
氟化氫%α-AlF3(0001)%密度汎函理論%差分電荷密度%電子態密度
불화경%α-AlF3(0001)%밀도범함이론%차분전하밀도%전자태밀도
HF%α-AlF3(0001)%Density functional theory%Charge density difference%Density of state
利用密度泛函理论系统研究了不同覆盖度下HF在3F、2F、1F与Al终端的α-AlF3(0001)表面的吸附行为,分析了HF与不同终端表面相互作用的电子机制.计算结果表明: HF在3F终端的α-AlF3(0001)表面物理吸附;在2F及1F终端表面化学吸附,形成Al-F键和FHF结构,使HF分子活化,可以参加下一步的氟化反应;在Al终端表面解离吸附形成Al-F与Al-H键.3F、2F、1F及Al终端表面配位不饱和数目分别为0、1、2与3配位.不同覆盖度研究表明,在2F终端表面上,吸附一个HF分子使表面Al配位达到饱和,后续吸附的HF为物理吸附;而在1F与Al终端表面仍可化学吸附.因此,推测α-AlF3暴露不同终端表面中Al原子配位不饱和数越高,其对HF吸附与活化能力越强,可能的氟化催化反应活性越高.差分电荷密度与电子态密度分析表明, HF与3F终端α-AlF3(0001)表面发生弱相互作用,而与2F、1F与Al终端表面形成较强的电子相互作用.
利用密度汎函理論繫統研究瞭不同覆蓋度下HF在3F、2F、1F與Al終耑的α-AlF3(0001)錶麵的吸附行為,分析瞭HF與不同終耑錶麵相互作用的電子機製.計算結果錶明: HF在3F終耑的α-AlF3(0001)錶麵物理吸附;在2F及1F終耑錶麵化學吸附,形成Al-F鍵和FHF結構,使HF分子活化,可以參加下一步的氟化反應;在Al終耑錶麵解離吸附形成Al-F與Al-H鍵.3F、2F、1F及Al終耑錶麵配位不飽和數目分彆為0、1、2與3配位.不同覆蓋度研究錶明,在2F終耑錶麵上,吸附一箇HF分子使錶麵Al配位達到飽和,後續吸附的HF為物理吸附;而在1F與Al終耑錶麵仍可化學吸附.因此,推測α-AlF3暴露不同終耑錶麵中Al原子配位不飽和數越高,其對HF吸附與活化能力越彊,可能的氟化催化反應活性越高.差分電荷密度與電子態密度分析錶明, HF與3F終耑α-AlF3(0001)錶麵髮生弱相互作用,而與2F、1F與Al終耑錶麵形成較彊的電子相互作用.
이용밀도범함이론계통연구료불동복개도하HF재3F、2F、1F여Al종단적α-AlF3(0001)표면적흡부행위,분석료HF여불동종단표면상호작용적전자궤제.계산결과표명: HF재3F종단적α-AlF3(0001)표면물리흡부;재2F급1F종단표면화학흡부,형성Al-F건화FHF결구,사HF분자활화,가이삼가하일보적불화반응;재Al종단표면해리흡부형성Al-F여Al-H건.3F、2F、1F급Al종단표면배위불포화수목분별위0、1、2여3배위.불동복개도연구표명,재2F종단표면상,흡부일개HF분자사표면Al배위체도포화,후속흡부적HF위물리흡부;이재1F여Al종단표면잉가화학흡부.인차,추측α-AlF3폭로불동종단표면중Al원자배위불포화수월고,기대HF흡부여활화능력월강,가능적불화최화반응활성월고.차분전하밀도여전자태밀도분석표명, HF여3F종단α-AlF3(0001)표면발생약상호작용,이여2F、1F여Al종단표면형성교강적전자상호작용.
Using density functional theory, the adsorption behaviors of HF at α-AlF3(0001) surfaces with different coverages of 3F, 2F, 1F, and Al terminations were studied systematical y. The electronic interactions between HF and the α-AlF3(0001) surfaces were also analyzed. Our results indicated that physisorption occurs when HF adsorbs at the 3F-terminated surface. Strong chemisorption occurs, and Al-F and FHF structures form when HF adsorbs at surfaces with 2F and 1F terminations. Under these conditions, the HF molecule is activated, and might take part in the subsequent fluorination reactions. Dissociated adsorption occurs, and Al-F and Al-H bonds form when HF is adsorbed on the Al-terminated surface. The unsaturated coordination numbers for surface Al with 3F, 2F, 1F, and Al-terminated surfaces are 0, 1, 2, and 3, respectively. The coordination number of the AlF2 surface is saturated when one HF molecule adsorbs; then, only physical adsorption occurs for any subsequently adsorbed HF molecules. However, it can stil chemisorb at the 1F and Al-terminated surfaces. It is therefore reasonable to deduce that the higher the unsaturated coordination number of the surface, the higher the amount of activated HF, and possibly the higher the catalytic activities in the fluorination reactions. Charge density difference and density of states indicated that weak interactions occur between the HF and the 3F-terminated surface, while strong interactions occur between the HF and the 2F, 1F, Al-terminated surfaces.