物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2013年
2期
293-297
,共5页
一氧化锰%纳米材料%转化反应%锂离子电池%负极材料
一氧化錳%納米材料%轉化反應%鋰離子電池%負極材料
일양화맹%납미재료%전화반응%리리자전지%부겁재료
Manganese monoxide%Nano material%Conversion reaction%Lithium-ion battery%Anode material
以高锰酸钾和抗坏血酸合成的MnC2O4·2H2O为前驱体,通过固相烧结制备了纳米MnO材料.分别采用X射线衍射(XRD)、扫描电子显微镜(SEM)和恒电流充放电技术考察了其晶相结构、颗粒形貌和电化学性能.分析结果表明,该纳米MnO具有面心立方的岩盐结构,结晶度良好.其颗粒是由粒径为50-100 nm的一次颗粒结合而成的二次颗粒,大小约为400-600 nm.当充放电电流密度为46.3 mA·g-1时,纳米 MnO 的首次库仑效率可达68.9%,可逆比容量为679.7 mAh·g-1.在141.1 mA·g-1的电流密度下循环50圈后,比容量由584.5 mAh·g-1降至581.5 mAh·g-1,容量保持率高达99.5%,表现出优异的循环性能.此外,当电流密度增加到494.7 mA·g-1(~2C)时,其比容量依然可达290 mAh·g-1,表现出较好的倍率性能和快速充放电能力.因此,纳米MnO具有比容量高、循环稳定、倍率性能好和安全环保等优点,是一种非常有前景的锂离子电池负极材料.
以高錳痠鉀和抗壞血痠閤成的MnC2O4·2H2O為前驅體,通過固相燒結製備瞭納米MnO材料.分彆採用X射線衍射(XRD)、掃描電子顯微鏡(SEM)和恆電流充放電技術攷察瞭其晶相結構、顆粒形貌和電化學性能.分析結果錶明,該納米MnO具有麵心立方的巖鹽結構,結晶度良好.其顆粒是由粒徑為50-100 nm的一次顆粒結閤而成的二次顆粒,大小約為400-600 nm.噹充放電電流密度為46.3 mA·g-1時,納米 MnO 的首次庫崙效率可達68.9%,可逆比容量為679.7 mAh·g-1.在141.1 mA·g-1的電流密度下循環50圈後,比容量由584.5 mAh·g-1降至581.5 mAh·g-1,容量保持率高達99.5%,錶現齣優異的循環性能.此外,噹電流密度增加到494.7 mA·g-1(~2C)時,其比容量依然可達290 mAh·g-1,錶現齣較好的倍率性能和快速充放電能力.因此,納米MnO具有比容量高、循環穩定、倍率性能好和安全環保等優點,是一種非常有前景的鋰離子電池負極材料.
이고맹산갑화항배혈산합성적MnC2O4·2H2O위전구체,통과고상소결제비료납미MnO재료.분별채용X사선연사(XRD)、소묘전자현미경(SEM)화항전류충방전기술고찰료기정상결구、과립형모화전화학성능.분석결과표명,해납미MnO구유면심립방적암염결구,결정도량호.기과립시유립경위50-100 nm적일차과립결합이성적이차과립,대소약위400-600 nm.당충방전전류밀도위46.3 mA·g-1시,납미 MnO 적수차고륜효솔가체68.9%,가역비용량위679.7 mAh·g-1.재141.1 mA·g-1적전류밀도하순배50권후,비용량유584.5 mAh·g-1강지581.5 mAh·g-1,용량보지솔고체99.5%,표현출우이적순배성능.차외,당전류밀도증가도494.7 mA·g-1(~2C)시,기비용량의연가체290 mAh·g-1,표현출교호적배솔성능화쾌속충방전능력.인차,납미MnO구유비용량고、순배은정、배솔성능호화안전배보등우점,시일충비상유전경적리리자전지부겁재료.
Transition metal oxides, especial y manganese monoxide (MnO), are being intensively studied as candidate anode materials for next generation lithium-ion batteries in high efficiency energy storage applications such as portable electronics, electric vehicles, and stationary electricity storage. In this paper, the MnC2O4·2H2O precursor, prepared from KMnO4 and ascorbic acid, was heat-treated to synthesize nano MnO by a solid-state reaction approach. X-ray diffraction (XRD) showed that the so-obtained MnO had a rock-salt structure with good crystal inity, and scanning electron microscopy (SEM) indicated that the primary particle size was about 50-100 nm, while the secondary particle size was about 400-600 nm. As an active material for lithium-ion batteries, the nano MnO material delivered a reversible capacity of 679.7 mAh·g-1 with an initial columbic efficiency of 68.9% at a current density of 46.3 mA·g-1. The specific discharge capacity slightly decreased from 584.5 to 581.5 mAh·g-1 with a retention of 99.5% after 50 cycles at a current density of 141.1 mA·g-1. Moreover, the material was able to release a capacity of 290 mAh·g-1 at current densities as high as 494.7 mA·g-1 (corresponding to ~2C), which demonstrates reasonable rate performance and moderately fast charge/discharge capabilities. Al of the above characteristics make nano MnO promising anode materials for developing high-capacity, long-life, low-cost, and environmental y-friendly lithium-ion batteries.