物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2013年
3期
660-666
,共7页
潘卉*%赵甜%张予东%张治军
潘卉*%趙甜%張予東%張治軍
반훼*%조첨%장여동%장치군
氧化钛%氧化石墨%纳米复合材料%制备%表征
氧化鈦%氧化石墨%納米複閤材料%製備%錶徵
양화태%양화석묵%납미복합재료%제비%표정
Titania%Graphite oxide%Nanocomposite%Preparation%Characterization
采用四氯化钛(TiCl4)和氧化石墨为主要原料,通过原位复合的方法制备了氧化钛/氧化石墨(TiO2/GO)纳米复合材料.采用傅里叶变换红外(FTIR)光谱仪、X射线衍射(XRD)仪、热重-差热分析(TG-DTA)仪、X射线光电子能谱(XPS)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)等手段研究了TiO2/GO纳米复合材料的结构和性能.结果表明,石墨在氧化过程中结构层键合大量含氧官能团,部分含氧官能团进一步与纳米TiO2以化学键结合;复合后氧化石墨原有衍射峰消失.将TiO2/GO添加到水性聚氨酯(WPU)中,制备了TiO2/GO-WPU复合涂膜.紫外吸收光谱表明,随着氧化石墨含量的增加,复合涂膜的紫外吸收能力增强,当GO含量达到一定数值时,涂膜的紫外吸收最强,随着GO含量继续增加吸收又呈下降趋势,存在一较优浓度值. TiO2/GO的添加显著提高了聚氨酯涂层的抗紫外线性能,耐磨损性能和热稳定性能.
採用四氯化鈦(TiCl4)和氧化石墨為主要原料,通過原位複閤的方法製備瞭氧化鈦/氧化石墨(TiO2/GO)納米複閤材料.採用傅裏葉變換紅外(FTIR)光譜儀、X射線衍射(XRD)儀、熱重-差熱分析(TG-DTA)儀、X射線光電子能譜(XPS)、透射電子顯微鏡(TEM)和掃描電子顯微鏡(SEM)等手段研究瞭TiO2/GO納米複閤材料的結構和性能.結果錶明,石墨在氧化過程中結構層鍵閤大量含氧官能糰,部分含氧官能糰進一步與納米TiO2以化學鍵結閤;複閤後氧化石墨原有衍射峰消失.將TiO2/GO添加到水性聚氨酯(WPU)中,製備瞭TiO2/GO-WPU複閤塗膜.紫外吸收光譜錶明,隨著氧化石墨含量的增加,複閤塗膜的紫外吸收能力增彊,噹GO含量達到一定數值時,塗膜的紫外吸收最彊,隨著GO含量繼續增加吸收又呈下降趨勢,存在一較優濃度值. TiO2/GO的添加顯著提高瞭聚氨酯塗層的抗紫外線性能,耐磨損性能和熱穩定性能.
채용사록화태(TiCl4)화양화석묵위주요원료,통과원위복합적방법제비료양화태/양화석묵(TiO2/GO)납미복합재료.채용부리협변환홍외(FTIR)광보의、X사선연사(XRD)의、열중-차열분석(TG-DTA)의、X사선광전자능보(XPS)、투사전자현미경(TEM)화소묘전자현미경(SEM)등수단연구료TiO2/GO납미복합재료적결구화성능.결과표명,석묵재양화과정중결구층건합대량함양관능단,부분함양관능단진일보여납미TiO2이화학건결합;복합후양화석묵원유연사봉소실.장TiO2/GO첨가도수성취안지(WPU)중,제비료TiO2/GO-WPU복합도막.자외흡수광보표명,수착양화석묵함량적증가,복합도막적자외흡수능력증강,당GO함량체도일정수치시,도막적자외흡수최강,수착GO함량계속증가흡수우정하강추세,존재일교우농도치. TiO2/GO적첨가현저제고료취안지도층적항자외선성능,내마손성능화열은정성능.
Titania/graphite oxide (TiO2/GO) nanocomposites were obtained from a facile in-situ method using titanium tetrachloride (TiCl4) and GO. Nanocomposite structures and properties were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis absorption spectroscopy. TiO2/GO nanocomposites could be wel dispersed in water, and the addition of waterborne polyurethane (WPU) yielded TiO2/GO-WPU coatings. During oxidation, the graphite structural layer bound with numerous functional groups, some of which were chemical y bound TiO2. The GO peak disappeared after combining with TiO2 nanoparticles. UV absorption data indicated an increasing percentage of WPU with increasing GO content. There was an optimal additive concentration at which the best absorbance results were achieved. The thermal stability and UV and wear resistance of the WPU were greatly improved upon the addition of TiO2/GO.