物理学报
物理學報
물이학보
2013年
3期
478-485
,共8页
李志国%刘玮?%何静婧%李祖亮%韩安军%张超%周志强%张毅%孙云?
李誌國%劉瑋?%何靜婧%李祖亮%韓安軍%張超%週誌彊%張毅%孫雲?
리지국%류위?%하정청%리조량%한안군%장초%주지강%장의%손운?
Cu(In%Ga)Se2(CIGS)%太阳电池%沉积速率%低温生长
Cu(In%Ga)Se2(CIGS)%太暘電池%沉積速率%低溫生長
Cu(In%Ga)Se2(CIGS)%태양전지%침적속솔%저온생장
Cu(In%Ga)Se2(CIGS)%solar cells%deposition rates%low-temperature growth
研究了三步法第二步沉积速率对低温生长Cu(In,Ga)Se2薄膜结构、电学特性和器件特性的影响.通过改变第二步沉积速率发现,提高沉积速率可以显著促进薄膜晶粒生长,提高晶粒紧凑程度降低晶界复合,同时有效改善两相分离现象,提高电池的开路电压和短路电流,有助于Cu(In,Ga)Se2电池光电转换效率的提高.但同时研究表明,随着第二步沉积速率的增加,会促进暂态Cu2?xSe晶粒的生长,引起Cu(In,Ga)Se2薄膜表面粗糙度增大,并阻碍Na向Cu(In,Ga)Se2薄膜表面的扩散,造成施主缺陷钝化效应降低,薄膜载流子浓度下降和电阻率升高,且过高的沉积速率会引起电池内部复合增加并产生分流路径,造成开路电压下降进而引起电池效率恶化.最终,通过最佳化第二步沉积速率,在衬底温度为420?C时,得到最高转换效率为11.24%的Cu(In,Ga)Se2薄膜太阳电池.
研究瞭三步法第二步沉積速率對低溫生長Cu(In,Ga)Se2薄膜結構、電學特性和器件特性的影響.通過改變第二步沉積速率髮現,提高沉積速率可以顯著促進薄膜晶粒生長,提高晶粒緊湊程度降低晶界複閤,同時有效改善兩相分離現象,提高電池的開路電壓和短路電流,有助于Cu(In,Ga)Se2電池光電轉換效率的提高.但同時研究錶明,隨著第二步沉積速率的增加,會促進暫態Cu2?xSe晶粒的生長,引起Cu(In,Ga)Se2薄膜錶麵粗糙度增大,併阻礙Na嚮Cu(In,Ga)Se2薄膜錶麵的擴散,造成施主缺陷鈍化效應降低,薄膜載流子濃度下降和電阻率升高,且過高的沉積速率會引起電池內部複閤增加併產生分流路徑,造成開路電壓下降進而引起電池效率噁化.最終,通過最佳化第二步沉積速率,在襯底溫度為420?C時,得到最高轉換效率為11.24%的Cu(In,Ga)Se2薄膜太暘電池.
연구료삼보법제이보침적속솔대저온생장Cu(In,Ga)Se2박막결구、전학특성화기건특성적영향.통과개변제이보침적속솔발현,제고침적속솔가이현저촉진박막정립생장,제고정립긴주정도강저정계복합,동시유효개선량상분리현상,제고전지적개로전압화단로전류,유조우Cu(In,Ga)Se2전지광전전환효솔적제고.단동시연구표명,수착제이보침적속솔적증가,회촉진잠태Cu2?xSe정립적생장,인기Cu(In,Ga)Se2박막표면조조도증대,병조애Na향Cu(In,Ga)Se2박막표면적확산,조성시주결함둔화효응강저,박막재류자농도하강화전조솔승고,차과고적침적속솔회인기전지내부복합증가병산생분류로경,조성개로전압하강진이인기전지효솔악화.최종,통과최가화제이보침적속솔,재츤저온도위420?C시,득도최고전환효솔위11.24%적Cu(In,Ga)Se2박막태양전지.
Polycrystalline Cu(In,Ga)Se2 (CIGS) thin ?lms are deposited onto soda-lime glass substrates by the low-temperature three-stage process (below substrate temperature of 420?C). The influences of growth rate in the second stage on structural and electrical properties of CIGS thin film and device performance are investigated. With the increase of deposition rate during the second stage, the crystallinity and grain compactness of CIGS thin film are promoted, and the double-peak reflection pattern is reduced obviously ,which can reduce the recombination in the grain boundary and help to improve the conversion efficiency of the CIGS solar cell significantly. However, according to the experimental results, higher growth rate during the second stage leads to rough surface and low carrier concentration. The larger surface roughness can be attributed to the larger grain size of secondary-phase Cu2?xSe, and the lower carrier concentration results from the reduction of passivation donor defect effect which is induced by the hindrance of Na diffusion from the glass substrate. High growth rate in the second stage is found to be able to increase the interface recombination and induce shunt paths in the solar cell and then the open circuit voltage and the cell parameters are deteriorated. Finally, a high conversion efficiency of 11.24%is achieved by optimizing the growth rate in the second stage.