物理学报
物理學報
물이학보
2013年
3期
494-503
,共10页
苑卫国%刘云%程军军%熊菲
苑衛國%劉雲%程軍軍%熊菲
원위국%류운%정군군%웅비
微博%中心性%复杂网络%信息传播%k-core
微博%中心性%複雜網絡%信息傳播%k-core
미박%중심성%복잡망락%신식전파%k-core
microblog%centrality%complex network%information transmission%k-Core
根据新浪微博的实际数据,建立了两个基于双向“关注”的用户关系网络,通过分析网络拓扑统计特征,发现二者均具有小世界、无标度特征.通过对节点度、紧密度、介数和k-core四个网络中心性指标进行实证分析,发现节点度服从分段幂率分布;介数相比其他中心性指标差异性最为显著;两个网络均具有明显的层次性,但不是所有度值大的节点核数也大;全局范围内各中心性指标之间存在着较强的相关性,但在度值较大的节点群这种相关性明显减弱.此外,借助基于传染病动力学的SIR信息传播模型来分析四种指标在刻画节点传播能力方面的差异性,仿真结果表明,选择具有不同中心性指标的初始传播节点,对信息传播速度和范围均具有不同影响;紧密度和k-core较其他指标可以更加准确地描述节点在信息传播中所处的网络核心位置,这有助于识别信息传播拓扑网络中的关键节点.
根據新浪微博的實際數據,建立瞭兩箇基于雙嚮“關註”的用戶關繫網絡,通過分析網絡拓撲統計特徵,髮現二者均具有小世界、無標度特徵.通過對節點度、緊密度、介數和k-core四箇網絡中心性指標進行實證分析,髮現節點度服從分段冪率分佈;介數相比其他中心性指標差異性最為顯著;兩箇網絡均具有明顯的層次性,但不是所有度值大的節點覈數也大;全跼範圍內各中心性指標之間存在著較彊的相關性,但在度值較大的節點群這種相關性明顯減弱.此外,藉助基于傳染病動力學的SIR信息傳播模型來分析四種指標在刻畫節點傳播能力方麵的差異性,倣真結果錶明,選擇具有不同中心性指標的初始傳播節點,對信息傳播速度和範圍均具有不同影響;緊密度和k-core較其他指標可以更加準確地描述節點在信息傳播中所處的網絡覈心位置,這有助于識彆信息傳播拓撲網絡中的關鍵節點.
근거신랑미박적실제수거,건립료량개기우쌍향“관주”적용호관계망락,통과분석망락탁복통계특정,발현이자균구유소세계、무표도특정.통과대절점도、긴밀도、개수화k-core사개망락중심성지표진행실증분석,발현절점도복종분단멱솔분포;개수상비기타중심성지표차이성최위현저;량개망락균구유명현적층차성,단불시소유도치대적절점핵수야대;전국범위내각중심성지표지간존재착교강적상관성,단재도치교대적절점군저충상관성명현감약.차외,차조기우전염병동역학적SIR신식전파모형래분석사충지표재각화절점전파능력방면적차이성,방진결과표명,선택구유불동중심성지표적초시전파절점,대신식전파속도화범위균구유불동영향;긴밀도화k-core교기타지표가이경가준학지묘술절점재신식전파중소처적망락핵심위치,저유조우식별신식전파탁복망락중적관건절점.
The identifying of the most influential nodes in the complex network is of great significance for information dissemination and control. We collect actual data from Sina Weibo and establish two user relationship networks based on bi-directional”concern”. By analyzing the statistical characteristics of the network topology, we find that each of them has a small world and scale free character-istics. Moreover, we describe four network centrality indicators, including node degree, closeness, betweenness and k-Core. Through empirical analysis of four-centrality metric distribution, we find that the node degrees follow a segmented power-law distribution;be-tweenness difference is most significant;both networks possess significant hierarchy, but not all of the nodes with higher degree have the greater k-Core values;strong correlation exists between the centrality indicators of all nodes, but this correlation is weakened in the node with higher degree value. The two networks are used to simulate the information spreading process with the SIR information dissemination model based on infectious disease dynamics. The simulation results show that there are different effects on the scope and speed of information dissemination under different initial selected individuals. We find that the closeness and k-Core can be more accurate representations of the core of the network location than other indicators, which helps us to identify influential nodes in the information dissemination network.