物理学报
物理學報
물이학보
2013年
4期
452-456
,共5页
袁昌来*%周秀娟%轩敏杰%许积文%杨云%刘心宇
袁昌來*%週秀娟%軒敏傑%許積文%楊雲%劉心宇
원창래*%주수연%헌민걸%허적문%양운%류심우
K0.5Na0.5NbO3-LiSbO3-BiFeO3%CuFe2O4%磁电耦合
K0.5Na0.5NbO3-LiSbO3-BiFeO3%CuFe2O4%磁電耦閤
K0.5Na0.5NbO3-LiSbO3-BiFeO3%CuFe2O4%자전우합
K0.5Na0.5NbO3-LiSbO3-BiFeO3%CuFe2O4%magnetoelectric coupling
采用传统的固相法制备了(1?x)(K0.5Na0.5NbO3-LiSbO3-BiFeO3)-xCuFe2O4(x=0.1,0.2,0.3,0.4)磁电复合陶瓷,并借助X射线衍射仪、扫描电镜和磁电耦合系数测试仪等对复合陶瓷的微结构和性能进行了分析.结果表明,复合陶瓷的K0.5Na0.5NbO3-LiSbO3-BiFeO3和CuFe2O4物相之间发生了一定的离子相互扩散作用,且两相的颗粒大小匹配性较好.随着CuFe2O4含量增加,复合陶瓷的压电系数从130 pC/N减小到30 pC/N,饱和磁致伸缩系数从4.5×10?6增加到12.4×10?6左右,磁电耦合系数表现出先增加后减小,在x=0.3时获得最大的磁电耦合系数9.4 mV·cm?1·Oe?1.
採用傳統的固相法製備瞭(1?x)(K0.5Na0.5NbO3-LiSbO3-BiFeO3)-xCuFe2O4(x=0.1,0.2,0.3,0.4)磁電複閤陶瓷,併藉助X射線衍射儀、掃描電鏡和磁電耦閤繫數測試儀等對複閤陶瓷的微結構和性能進行瞭分析.結果錶明,複閤陶瓷的K0.5Na0.5NbO3-LiSbO3-BiFeO3和CuFe2O4物相之間髮生瞭一定的離子相互擴散作用,且兩相的顆粒大小匹配性較好.隨著CuFe2O4含量增加,複閤陶瓷的壓電繫數從130 pC/N減小到30 pC/N,飽和磁緻伸縮繫數從4.5×10?6增加到12.4×10?6左右,磁電耦閤繫數錶現齣先增加後減小,在x=0.3時穫得最大的磁電耦閤繫數9.4 mV·cm?1·Oe?1.
채용전통적고상법제비료(1?x)(K0.5Na0.5NbO3-LiSbO3-BiFeO3)-xCuFe2O4(x=0.1,0.2,0.3,0.4)자전복합도자,병차조X사선연사의、소묘전경화자전우합계수측시의등대복합도자적미결구화성능진행료분석.결과표명,복합도자적K0.5Na0.5NbO3-LiSbO3-BiFeO3화CuFe2O4물상지간발생료일정적리자상호확산작용,차량상적과립대소필배성교호.수착CuFe2O4함량증가,복합도자적압전계수종130 pC/N감소도30 pC/N,포화자치신축계수종4.5×10?6증가도12.4×10?6좌우,자전우합계수표현출선증가후감소,재x=0.3시획득최대적자전우합계수9.4 mV·cm?1·Oe?1.
The (1?x)(K0.5Na0.5NbO3-LiSbO3-BiFeO3)-xCuFe2O4 (x=0.1, 0.2, 0.3 and 0.4) magnetoelectric composite ceramics are pre-pared by the conventional solid-state reaction method. The microstructures and properties of the composite ceramics are characterized by X-ray diffractometer, scanning electron microscope and magnetoelectric coupling coefficient meter. The weak ionic interdiffusions between the phases K0.5Na0.5NbO3-LiSbO3-BiFeO3 and CuFe2O4 are observed and their particle sizes are well matched between each other. With the increase of CuFe2O4 content, the piezoelectric coefficient (d33) of the composite ceramics decreases from 130 pC/N to 30 pC/N and the magnetostriction coefficient (?λ) increases from 4.5×10?6 to 12.4×10?6. The magnetoelectric coupling coefficient (αE) of the composite ceramics first increases and then decreases with the CuFe2O4 content increasing. When the composition x=0.3, a maximum value ofαE=9.4 mV·cm?1·Oe?1 is achieved.