物理学报
物理學報
물이학보
2013年
5期
59-67
,共9页
混沌时间序列预测%噪声%整体最小二乘%正则化
混沌時間序列預測%譟聲%整體最小二乘%正則化
혼돈시간서렬예측%조성%정체최소이승%정칙화
chaotic time series prediciton%noise%ensemble least square%regularization
对于含噪混沌时间序列预测问题,传统方法存在较大的经验性,对预测误差的构成分析不足,因而忽略了混沌动态重建与预测模型建立之间的差异性.本文将实际预测误差分解为预测器偏差和输入扰动误差,并对整体最小二乘和正则化两种全局预测方法进行分析比较,进而说明整体最小二乘适用于混沌动态的重建,对预测器偏差影响较大,而正则化方法能够改善预测器敏感性,对输入扰动误差影响较大.通过两个仿真实例,展示了混沌动态重建与预测模型建立之间的差异,在对比最小二乘和正则化方法的同时验证了实际预测误差受预测器偏差和输入扰动误差共同作用.并指出,在实际操作时应在二者间寻求平衡,以便使模型预测精度达到最优.
對于含譟混沌時間序列預測問題,傳統方法存在較大的經驗性,對預測誤差的構成分析不足,因而忽略瞭混沌動態重建與預測模型建立之間的差異性.本文將實際預測誤差分解為預測器偏差和輸入擾動誤差,併對整體最小二乘和正則化兩種全跼預測方法進行分析比較,進而說明整體最小二乘適用于混沌動態的重建,對預測器偏差影響較大,而正則化方法能夠改善預測器敏感性,對輸入擾動誤差影響較大.通過兩箇倣真實例,展示瞭混沌動態重建與預測模型建立之間的差異,在對比最小二乘和正則化方法的同時驗證瞭實際預測誤差受預測器偏差和輸入擾動誤差共同作用.併指齣,在實際操作時應在二者間尋求平衡,以便使模型預測精度達到最優.
대우함조혼돈시간서렬예측문제,전통방법존재교대적경험성,대예측오차적구성분석불족,인이홀략료혼돈동태중건여예측모형건립지간적차이성.본문장실제예측오차분해위예측기편차화수입우동오차,병대정체최소이승화정칙화량충전국예측방법진행분석비교,진이설명정체최소이승괄용우혼돈동태적중건,대예측기편차영향교대,이정칙화방법능구개선예측기민감성,대수입우동오차영향교대.통과량개방진실례,전시료혼돈동태중건여예측모형건립지간적차이,재대비최소이승화정칙화방법적동시험증료실제예측오차수예측기편차화수입우동오차공동작용.병지출,재실제조작시응재이자간심구평형,이편사모형예측정도체도최우.
For the noisy chaotic series prediction problem, traditional methods are quite empirical, and are lacking in the analysis of the composition of the prediction error, thereby ignoring the the difference between chaotic dynamics reconstruction and prediction model. Based on the composition of actual prediction error, the predictor bias error and input disturbance error are defined in this paper and two kinds of global forecasts, ensemble least-square method and regularization method are analysed. It is shown that the ensemble least-square method is suitable for the reconstruction of chaotic dynamics, but has a greater influence on the predictor error. On the other hand, the regularization method can improve the sensitivity of the predictor, but it can be influenced by the input perturbation error. Two simulation examples are used to demonstrate the difference between the chaotic dynamical reconstruction and the establishment of prediction model, and to compare the ensamble least-square method and the regularization method, and at the same time indicate that the actual prediction error is influenced both by the input disturbance error and by the predictor error. In practice, a balance should be stricken between the two, in order to optimize the model prediction accuracy.