物理学报
物理學報
물이학보
2013年
5期
398-404
,共7页
氮化硼纳米片%电子结构调控%Hubbard模型%量子力学第一性原理
氮化硼納米片%電子結構調控%Hubbard模型%量子力學第一性原理
담화붕납미편%전자결구조공%Hubbard모형%양자역학제일성원리
boron-nitride nanoflakes%electronic structure modification%hubbard model%first-principles calculations
单层氮化硼纳米材料具有与石墨烯相似的原子排列方式,但是由于硼原子和氮原子之间的电荷转移,两种材料的电子特性具有较大的差异.本文采用Hubbard模型和量子力学第一性原理计算相结合的方法研究了具有氢原子饱和的锯齿型边界的三角形氮化硼纳米片(Nanoflake)的电子结构,发现:与相应的石墨烯纳米片不同,出现在氮化硼纳米片费米能级附近的零能态(zero-energy-states)要么被电子完全占据,要么是全空的,表现出自旋简并的特点;通过对氮化硼纳米片进行电子(或空穴)掺杂可以有效地调控“零能态”上的电子占据,进而对氮化硼纳米片的自旋进行调控.这将为氮化硼纳米材料在自旋电子学等领域的应用提供重要的理论依据.
單層氮化硼納米材料具有與石墨烯相似的原子排列方式,但是由于硼原子和氮原子之間的電荷轉移,兩種材料的電子特性具有較大的差異.本文採用Hubbard模型和量子力學第一性原理計算相結閤的方法研究瞭具有氫原子飽和的鋸齒型邊界的三角形氮化硼納米片(Nanoflake)的電子結構,髮現:與相應的石墨烯納米片不同,齣現在氮化硼納米片費米能級附近的零能態(zero-energy-states)要麽被電子完全佔據,要麽是全空的,錶現齣自鏇簡併的特點;通過對氮化硼納米片進行電子(或空穴)摻雜可以有效地調控“零能態”上的電子佔據,進而對氮化硼納米片的自鏇進行調控.這將為氮化硼納米材料在自鏇電子學等領域的應用提供重要的理論依據.
단층담화붕납미재료구유여석묵희상사적원자배렬방식,단시유우붕원자화담원자지간적전하전이,량충재료적전자특성구유교대적차이.본문채용Hubbard모형화양자역학제일성원리계산상결합적방법연구료구유경원자포화적거치형변계적삼각형담화붕납미편(Nanoflake)적전자결구,발현:여상응적석묵희납미편불동,출현재담화붕납미편비미능급부근적령능태(zero-energy-states)요요피전자완전점거,요요시전공적,표현출자선간병적특점;통과대담화붕납미편진행전자(혹공혈)참잡가이유효지조공“령능태”상적전자점거,진이대담화붕납미편적자선진행조공.저장위담화붕납미재료재자선전자학등영역적응용제공중요적이론의거.
Boron-nitride graphene-like monolayer possesses a similar atomic arrangement to that of the famous graphene. However, due to the large difference in electronegetivity between boron and nitrogen atoms, the electronic properties of the two nanomaterials are different significantly. Here, we report on our theoretical investigation of the electronic structure and spin-polarization of zigzag-edged boron-nitride triangular nanoflake using a Hubbard model and the first-principles calculations within density-functional theory. Our numerical results indicate that in contrast to graphene nanoflake with spin-polarized ground state, the boron-nitride nanoflak has the zero-energy state that is either empty or fully occupied, and its ground state is thus spin-unpolarized which breaks the Lieb’s law. However, the electron occupation and spin-polarization of the zero-energy state of boron-nitride nanoflake can be tuned by doping it with electrons or holes. These results are expected to offer the theoretical basis for the applications of boron-nitride nanomaterials in spintronics.