物理学报
物理學報
물이학보
2013年
7期
492-497
,共6页
认知无线电%频谱感知%混合蛙跳算法%群体初始化
認知無線電%頻譜感知%混閤蛙跳算法%群體初始化
인지무선전%빈보감지%혼합와도산법%군체초시화
cognitive radio%spectrum sensing%shuffled frog leaping algorithm%swarm initialization
提出了一种用于认知无线电线性加权协作频谱感知的改进混合蛙跳算法(shuffled frog leaping algorithm, SFLA)的群体初始化技术,提出在SFLA初始群体中包含基于修正偏差因子所得的解,从而改进算法初期性能.仿真结果表明相比于传统群体初始化技术,本文所提出的群体初始化技术能够以更快的速率得到期望解,从而节约计算时间,更有利于实时应用
提齣瞭一種用于認知無線電線性加權協作頻譜感知的改進混閤蛙跳算法(shuffled frog leaping algorithm, SFLA)的群體初始化技術,提齣在SFLA初始群體中包含基于脩正偏差因子所得的解,從而改進算法初期性能.倣真結果錶明相比于傳統群體初始化技術,本文所提齣的群體初始化技術能夠以更快的速率得到期望解,從而節約計算時間,更有利于實時應用
제출료일충용우인지무선전선성가권협작빈보감지적개진혼합와도산법(shuffled frog leaping algorithm, SFLA)적군체초시화기술,제출재SFLA초시군체중포함기우수정편차인자소득적해,종이개진산법초기성능.방진결과표명상비우전통군체초시화기술,본문소제출적군체초시화기술능구이경쾌적속솔득도기망해,종이절약계산시간,경유리우실시응용
A swarm initialization method is proposed for modified shuffled frog leaping algorithm (SFLA) for linear combination cooperative spectrum sensing in cognitive radio. The solution obtained by modified deflection coefficient optimization is included in the initial swarm of SFLA, thus improving the performance of the algorithm at the early stage of the search. Simulations show that compared with the traditional swarm initialization technique, the proposed swarm initialization can obtain expected solutions faster, which means that the proposed technique can save computation time and is more suitable for real time applications.