湖北文理学院学报
湖北文理學院學報
호북문이학원학보
Journal of Hubei University of Arts and Science
2012年
11期
8-10
,共3页
Neumann边界%捕食模型%抛物方程比较原理%上下解
Neumann邊界%捕食模型%拋物方程比較原理%上下解
Neumann변계%포식모형%포물방정비교원리%상하해
Neumann boundary%Predator-prey model%Parabolic equation comparison principle%Upper-lower solutions
讨论一类边界条件为Neumann边界、带有饱和与竞争项的捕食模型解的损耗性和持久性,应用抛物方程比较原理和上下解方法获得解的损耗性和持久性的条件,和非负常稳态解的稳定性.
討論一類邊界條件為Neumann邊界、帶有飽和與競爭項的捕食模型解的損耗性和持久性,應用拋物方程比較原理和上下解方法穫得解的損耗性和持久性的條件,和非負常穩態解的穩定性.
토론일류변계조건위Neumann변계、대유포화여경쟁항적포식모형해적손모성화지구성,응용포물방정비교원리화상하해방법획득해적손모성화지구성적조건,화비부상은태해적은정성.
In this paper, we consider a predator-prey model with predator saturation and competition functional response under homogeneous Neumann boundary condition.By using parabolic equation comparison principle and the upper-lower solutions method,we study the dissipation and the persistence of the global solution, and obtain the corresponding conditions, and the stability of the nonnegative constant steady states solutions.