运筹与管理
運籌與管理
운주여관리
OPERATIONS RESEARCH AND MANAGEMENT SCIENCE
2012年
6期
32-37
,共6页
运筹学%应急服务%拉格朗日松驰算法%设施选址
運籌學%應急服務%拉格朗日鬆馳算法%設施選阯
운주학%응급복무%랍격랑일송치산법%설시선지
operation research%emergency service%lagrangian relaxation algorithm%facility location
面向快速响应与成本优化的设施选址问题研究:半径内与半径外服务将享受不同的服务价格,如何选择合适的服务站,使得净收益(服务收入-建站成本-路线成本)最大化或“收益损失成本+建站成本+路线成本”最小化.这一问题广泛应用于应急服务、快递、维修网络等领域,其特点是考虑了响应速度与服务价格、成本之间的关系,根据净收益最大化或者成本最小化原则自动判断是否为“偏远的”需求点提供快速服务,实现服务成本与响应速度的双重优化.本文建立了该问题的零一整数规划模型,并构造了求解问题的拉格朗日松驰算法,实验显示算法具有很好的求解效率与求解质量,可在较短时间内求解1000个节点规模的问题,并且相比传统的分枝定界算法节约了大量的计算时间.
麵嚮快速響應與成本優化的設施選阯問題研究:半徑內與半徑外服務將享受不同的服務價格,如何選擇閤適的服務站,使得淨收益(服務收入-建站成本-路線成本)最大化或“收益損失成本+建站成本+路線成本”最小化.這一問題廣汎應用于應急服務、快遞、維脩網絡等領域,其特點是攷慮瞭響應速度與服務價格、成本之間的關繫,根據淨收益最大化或者成本最小化原則自動判斷是否為“偏遠的”需求點提供快速服務,實現服務成本與響應速度的雙重優化.本文建立瞭該問題的零一整數規劃模型,併構造瞭求解問題的拉格朗日鬆馳算法,實驗顯示算法具有很好的求解效率與求解質量,可在較短時間內求解1000箇節點規模的問題,併且相比傳統的分枝定界算法節約瞭大量的計算時間.
면향쾌속향응여성본우화적설시선지문제연구:반경내여반경외복무장향수불동적복무개격,여하선택합괄적복무참,사득정수익(복무수입-건참성본-로선성본)최대화혹“수익손실성본+건참성본+로선성본”최소화.저일문제엄범응용우응급복무、쾌체、유수망락등영역,기특점시고필료향응속도여복무개격、성본지간적관계,근거정수익최대화혹자성본최소화원칙자동판단시부위“편원적”수구점제공쾌속복무,실현복무성본여향응속도적쌍중우화.본문건립료해문제적령일정수규화모형,병구조료구해문제적랍격랑일송치산법,실험현시산법구유흔호적구해효솔여구해질량,가재교단시간내구해1000개절점규모적문제,병차상비전통적분지정계산법절약료대량적계산시간.
The cost & speed optimization on facility location (CSOFL)problem considers the optimal way of loca -ting facilities to minimize the total routing costs , opening costs as well as penalty costs which will be counted when the service distance is bigger than a given number .CSOFL has a wide range of applications within emer -gency response, logistics, maintain servicing as well as express delivery .By considering the relationship of re-sponse time, service benefits and service costs, the problem seeks a right decision on whether to bring distant customers into the range of service radius .The optimization considers both service costs and service speed .This paper constructs an 0 -1 integer programming model for CSOFL .Then we provide a heuristic algorithm based on Lagrangian relaxation. The experiments show that the algorithm works well , and can solve larger scale instance of CSOFL with 5% computing times of branch & bound.