自动化与仪器仪表
自動化與儀器儀錶
자동화여의기의표
AUTOMATION & INSTRUMENTATION
2013年
1期
10-13
,共4页
王进花%付德强%曹洁%李军
王進花%付德彊%曹潔%李軍
왕진화%부덕강%조길%리군
目标跟踪%粒子滤波%EKPF%UPF
目標跟蹤%粒子濾波%EKPF%UPF
목표근종%입자려파%EKPF%UPF
object tracking%particle filter%EKPF%UPF
针对标准粒子滤波算法存在的缺陷,本文引入了两种改进的方法,引入最新的量测信息,改进粒子滤波的建议分布.EKPF通过引入扩展卡尔曼算法改进粒子分布,UPF引入无味变换改进粒子的分布,并对其进行了仿真对比分析.实验结果表明,UPF算法优于扩展卡尔曼粒子滤波算法与标准粒子滤波算法.
針對標準粒子濾波算法存在的缺陷,本文引入瞭兩種改進的方法,引入最新的量測信息,改進粒子濾波的建議分佈.EKPF通過引入擴展卡爾曼算法改進粒子分佈,UPF引入無味變換改進粒子的分佈,併對其進行瞭倣真對比分析.實驗結果錶明,UPF算法優于擴展卡爾曼粒子濾波算法與標準粒子濾波算法.
침대표준입자려파산법존재적결함,본문인입료량충개진적방법,인입최신적량측신식,개진입자려파적건의분포.EKPF통과인입확전잡이만산법개진입자분포,UPF인입무미변환개진입자적분포,병대기진행료방진대비분석.실험결과표명,UPF산법우우확전잡이만입자려파산법여표준입자려파산법.
For the defects of the standard particle filter algorithm, two improved algorithm are proposed, which introduced the latest measurement and improved particle filter proposal distribution. EKPF through the introduction of extended Kalman al-gorithms to improve the particle distribution, UPF introduces the unscented transformation to improve the distribution of the par-ticles, and a simulation of comparative analysis is given. The experimental results show that the UPF algorithm is better than the extended Kalman particle filter algorithm and the standard particle filter algorithm.