中国工程科学
中國工程科學
중국공정과학
ENGINEERING SCIENCE
2013年
1期
106-112
,共7页
祝丹晖%解妙霞%孔祥杰%张文博%陈花玲
祝丹暉%解妙霞%孔祥傑%張文博%陳花玲
축단휘%해묘하%공상걸%장문박%진화령
中高频响应%能量有限元方法%声振响应预示%机械结构%动力学
中高頻響應%能量有限元方法%聲振響應預示%機械結構%動力學
중고빈향응%능량유한원방법%성진향응예시%궤계결구%동역학
mid and high frequency response%energy finite element method%prediction of vibro-acoustical response%mechanical structure%dynamics
从理论研究和应用研究两个方面追踪了国内外关于能量有限元的发展现状,并指出能量有限元已趋向于预示越来越复杂的结构动响应;接下来介绍本课题组近年来利用能量有限元方法针对实际复杂结构及复杂载荷环境中的高频动响应问题所做的研究工作,主要包括3个部分:一是在考虑多种传递波功率流耦合的情况下,发展了圆柱壳、截锥壳等复杂结构的高频响应能量有限元方法,从而得到了此类结构的中高频局部动响应特性;二是考虑在脉动载荷、混响室等复杂环境中,利用能量有限元方法并结合能量边界元方法预示了结构的高频振动特性和声振耦合特性;三是开发了能量有限元的计算软件,为其大规模应用奠定了基础.最后指出了能量有限元方法目前存在的问题和进一步研究的方向.
從理論研究和應用研究兩箇方麵追蹤瞭國內外關于能量有限元的髮展現狀,併指齣能量有限元已趨嚮于預示越來越複雜的結構動響應;接下來介紹本課題組近年來利用能量有限元方法針對實際複雜結構及複雜載荷環境中的高頻動響應問題所做的研究工作,主要包括3箇部分:一是在攷慮多種傳遞波功率流耦閤的情況下,髮展瞭圓柱殼、截錐殼等複雜結構的高頻響應能量有限元方法,從而得到瞭此類結構的中高頻跼部動響應特性;二是攷慮在脈動載荷、混響室等複雜環境中,利用能量有限元方法併結閤能量邊界元方法預示瞭結構的高頻振動特性和聲振耦閤特性;三是開髮瞭能量有限元的計算軟件,為其大規模應用奠定瞭基礎.最後指齣瞭能量有限元方法目前存在的問題和進一步研究的方嚮.
종이론연구화응용연구량개방면추종료국내외관우능량유한원적발전현상,병지출능량유한원이추향우예시월래월복잡적결구동향응;접하래개소본과제조근년래이용능량유한원방법침대실제복잡결구급복잡재하배경중적고빈동향응문제소주적연구공작,주요포괄3개부분:일시재고필다충전체파공솔류우합적정황하,발전료원주각、절추각등복잡결구적고빈향응능량유한원방법,종이득도료차류결구적중고빈국부동향응특성;이시고필재맥동재하、혼향실등복잡배경중,이용능량유한원방법병결합능량변계원방법예시료결구적고빈진동특성화성진우합특성;삼시개발료능량유한원적계산연건,위기대규모응용전정료기출.최후지출료능량유한원방법목전존재적문제화진일보연구적방향.
In this paper,recent researches about basic theory and applications of EFEM are reviewed, which indicate that the development direction of this method tend to predict the dynamic response of complex structures under the complex environments. Then,towarding to this tendency,the achievements of our research group are presented,which focus on predict the dynamical response of actual complex mechanical structures ex-cited by complex external excitation in practical. There are three main aspects are referred:the first section is that the EFEM to predict the response of complex structures is developed by us when the power flow transfer of multi-waves considered,such as the cylindrical shell and truncated conical shell,and this method help us to ob-tain the local detail response of complex structures in mid and high frequency range;the second part is that we extend the EFEM to predict the vibro-acoustical characteristics of complex structures under the complex excita-tions,including the fluctuate pressure load and the acoustic load in reverberation chamber;the last section is that we develop the EFEM solver and the application platform,which facilitate the further practical applications of EFEM greatly. At the end of this paper,the problems to be solved and feasible research contents in the future of EFEM are pointed out briefly.