制冷学报
製冷學報
제랭학보
JOURNAL OF REFRIGERATION
2013年
1期
65-68
,共4页
裴文伟%郭宪民%王善云%郭欣炜
裴文偉%郭憲民%王善雲%郭訢煒
배문위%곽헌민%왕선운%곽흔위
两相流引射循环%两相流引射器%几何参数%实验
兩相流引射循環%兩相流引射器%幾何參數%實驗
량상류인사순배%량상류인사기%궤하삼수%실험
two-phase ejector cycle%two-phase ejector%geometric parameter%experiment
用两相流引射器代替膨胀阀,可回收两相流引射制冷循环中高压工质的压力能,提高制冷系统效率.对以R134a为工质的两相流引射制冷系统性能进行了实验研究,分析了喷嘴喉部直径和混合室直径对R134a两相流引射器及引射制冷系统性能的影响.实验结果表明,在固定工况条件下,存在使引射比达到最大的最佳喷嘴喉部直径和混合室直径组合.在蒸发温度为3℃、冷凝温度为55℃的工况下,当喷嘴喉部直径为2.0mm、混合室直径为16mm时引射器的引射比最大.在固定工况条件下,使引射比达到最大值的喷嘴喉部直径和混合室直径的最佳组合与使系统COP达到最大值的几何参数组合并不一致.这可能是由于在引射器中产生了激波等因素引起的,其中机理尚需要进行更深入的研究.
用兩相流引射器代替膨脹閥,可迴收兩相流引射製冷循環中高壓工質的壓力能,提高製冷繫統效率.對以R134a為工質的兩相流引射製冷繫統性能進行瞭實驗研究,分析瞭噴嘴喉部直徑和混閤室直徑對R134a兩相流引射器及引射製冷繫統性能的影響.實驗結果錶明,在固定工況條件下,存在使引射比達到最大的最佳噴嘴喉部直徑和混閤室直徑組閤.在蒸髮溫度為3℃、冷凝溫度為55℃的工況下,噹噴嘴喉部直徑為2.0mm、混閤室直徑為16mm時引射器的引射比最大.在固定工況條件下,使引射比達到最大值的噴嘴喉部直徑和混閤室直徑的最佳組閤與使繫統COP達到最大值的幾何參數組閤併不一緻.這可能是由于在引射器中產生瞭激波等因素引起的,其中機理尚需要進行更深入的研究.
용량상류인사기대체팽창벌,가회수량상류인사제랭순배중고압공질적압력능,제고제랭계통효솔.대이R134a위공질적량상류인사제랭계통성능진행료실험연구,분석료분취후부직경화혼합실직경대R134a량상류인사기급인사제랭계통성능적영향.실험결과표명,재고정공황조건하,존재사인사비체도최대적최가분취후부직경화혼합실직경조합.재증발온도위3℃、냉응온도위55℃적공황하,당분취후부직경위2.0mm、혼합실직경위16mm시인사기적인사비최대.재고정공황조건하,사인사비체도최대치적분취후부직경화혼합실직경적최가조합여사계통COP체도최대치적궤하삼수조합병불일치.저가능시유우재인사기중산생료격파등인소인기적,기중궤리상수요진행경심입적연구.
In order to increase the coefficient of performance (COP) of the refrigeration system , the expansion valve is replaced by a two-phase ejector in the two-phase ejector refrigeration cycle to recover the potential energy of the high pressure refrigerant. The performance of two-phase ejector refrigeration system with refrigerant R134a as working fluid is experimentally investigated. The effects of the throat diameter of the nozzle and the diameter of the mixing chamber on the performance of the ejector and the two-phase ejector refrigeration cycle system were analyzed. The experimental results indicate that there is an optimal combination of the nozzle throat diameter and the mixing chamber diameter to maximize the entrainment ratio under a fixed working condition. The entrainment ratio of the ejector reaches to the maximum value with the throat diameter of 2.0mm and the mixing chamber diameter of 16mm under the conditions of 3℃ evaporating temperature and 55℃ condensing temperature. Under a fixed working condition, the optimal combination of the nozzle throat diameter and the mixing chamber diameter for maximum of the entrainment ratio is not consistent with the one for maximum of the COP of the refrigeration system. This may be caused by the shocks in the ejector, which should be investigated deeply.