中国组织工程研究
中國組織工程研究
중국조직공정연구
Journal of Clinical Rehabilitative Tissue Engineering Research
2013年
17期
3049-3056
,共8页
李雷%姜红堃%王刚%段景柱%金国鑫%王欢
李雷%薑紅堃%王剛%段景柱%金國鑫%王歡
리뢰%강홍곤%왕강%단경주%금국흠%왕환
骨关节植入物%脊柱植入物%颈椎%生物力学%有限元法%寰枕关节%寰枢关节%省级基金
骨關節植入物%脊柱植入物%頸椎%生物力學%有限元法%寰枕關節%寰樞關節%省級基金
골관절식입물%척주식입물%경추%생물역학%유한원법%환침관절%환추관절%성급기금
bone and joint implants%spinal implants%cervical vertebrae%biomechanics%finite element method%occipitoatlantal joint%atlantoaxial joint%provincial grants-supported paper
背景:人体组织属性主要表现为非线性,颈枕部的生物力学特点更易受软组织材料属性变化的影响,因此建立非线性有限元模型与人体真实属性更接近.
目的:构建正常成人颈枕部三维非线性有限元模型并验证其有效性.
方法:利用MarConi MX8000多层螺旋CT对健康成人进行颅底-C3段扫描,获取二维图像.直接读入Dicom格式原始图像,图像分割,数据光顺,三维重建后生成颅底-C3节段脊柱三维实体模型;将此模型导入ScanFE模块,进行体网格划分;在ANSYS 10.0软件中直接导入以上三维模型,构建颅底-C3段内韧带单元,模拟韧带力-位移曲线,建立完成颅底-C3段的三维非线性有限元模型.垂直向下方向施加40 N预载荷,1.5 N?m力矩模拟前屈、后伸、侧屈及旋转运动,对比分析实验结果,判断模型应力分布与临床相符度.
结果与结论:构建的三维非线性有限元模型包括663551个单元,178247个节点.施加预载荷及1.5 N?m力矩后,寰枕关节运动范围为前屈13.3°、后伸11.9°、侧屈4.3°、旋转8.7°;寰枢关节运动范围为前屈15.5°、后伸12.6°,侧屈6.4°、旋转30.8°,与尸体标本实验结果相符.从整个模型的纵向应力分布看,在任何相对位置状态下,枢椎齿状突后方的应力均较高,后伸位时应力增高区域加大.上颈椎的应力主要集中于椎管周围,寰椎侧块两端及枢椎横突的应力则较小.对比研究发现,在不同相对工况下前屈、后伸、侧屈、旋转时C2-C3小关节应力均大于钩椎关节,颈枕部三维非线性有限元模型的应力分布特点符合临床实际情况.结果提示应用多层螺旋CT扫描得到的二维图像及simple ware、Ansys10.0软件,建立的颈枕部三维非线性有限元模型符合人体真实的运动规律,可以很好地模拟颈枕部的生物力学特性.
揹景:人體組織屬性主要錶現為非線性,頸枕部的生物力學特點更易受軟組織材料屬性變化的影響,因此建立非線性有限元模型與人體真實屬性更接近.
目的:構建正常成人頸枕部三維非線性有限元模型併驗證其有效性.
方法:利用MarConi MX8000多層螺鏇CT對健康成人進行顱底-C3段掃描,穫取二維圖像.直接讀入Dicom格式原始圖像,圖像分割,數據光順,三維重建後生成顱底-C3節段脊柱三維實體模型;將此模型導入ScanFE模塊,進行體網格劃分;在ANSYS 10.0軟件中直接導入以上三維模型,構建顱底-C3段內韌帶單元,模擬韌帶力-位移麯線,建立完成顱底-C3段的三維非線性有限元模型.垂直嚮下方嚮施加40 N預載荷,1.5 N?m力矩模擬前屈、後伸、側屈及鏇轉運動,對比分析實驗結果,判斷模型應力分佈與臨床相符度.
結果與結論:構建的三維非線性有限元模型包括663551箇單元,178247箇節點.施加預載荷及1.5 N?m力矩後,寰枕關節運動範圍為前屈13.3°、後伸11.9°、側屈4.3°、鏇轉8.7°;寰樞關節運動範圍為前屈15.5°、後伸12.6°,側屈6.4°、鏇轉30.8°,與尸體標本實驗結果相符.從整箇模型的縱嚮應力分佈看,在任何相對位置狀態下,樞椎齒狀突後方的應力均較高,後伸位時應力增高區域加大.上頸椎的應力主要集中于椎管週圍,寰椎側塊兩耑及樞椎橫突的應力則較小.對比研究髮現,在不同相對工況下前屈、後伸、側屈、鏇轉時C2-C3小關節應力均大于鉤椎關節,頸枕部三維非線性有限元模型的應力分佈特點符閤臨床實際情況.結果提示應用多層螺鏇CT掃描得到的二維圖像及simple ware、Ansys10.0軟件,建立的頸枕部三維非線性有限元模型符閤人體真實的運動規律,可以很好地模擬頸枕部的生物力學特性.
배경:인체조직속성주요표현위비선성,경침부적생물역학특점경역수연조직재료속성변화적영향,인차건립비선성유한원모형여인체진실속성경접근.
목적:구건정상성인경침부삼유비선성유한원모형병험증기유효성.
방법:이용MarConi MX8000다층라선CT대건강성인진행로저-C3단소묘,획취이유도상.직접독입Dicom격식원시도상,도상분할,수거광순,삼유중건후생성로저-C3절단척주삼유실체모형;장차모형도입ScanFE모괴,진행체망격화분;재ANSYS 10.0연건중직접도입이상삼유모형,구건로저-C3단내인대단원,모의인대력-위이곡선,건립완성로저-C3단적삼유비선성유한원모형.수직향하방향시가40 N예재하,1.5 N?m력구모의전굴、후신、측굴급선전운동,대비분석실험결과,판단모형응력분포여림상상부도.
결과여결론:구건적삼유비선성유한원모형포괄663551개단원,178247개절점.시가예재하급1.5 N?m력구후,환침관절운동범위위전굴13.3°、후신11.9°、측굴4.3°、선전8.7°;환추관절운동범위위전굴15.5°、후신12.6°,측굴6.4°、선전30.8°,여시체표본실험결과상부.종정개모형적종향응력분포간,재임하상대위치상태하,추추치상돌후방적응력균교고,후신위시응력증고구역가대.상경추적응력주요집중우추관주위,환추측괴량단급추추횡돌적응력칙교소.대비연구발현,재불동상대공황하전굴、후신、측굴、선전시C2-C3소관절응력균대우구추관절,경침부삼유비선성유한원모형적응력분포특점부합림상실제정황.결과제시응용다층라선CT소묘득도적이유도상급simple ware、Ansys10.0연건,건립적경침부삼유비선성유한원모형부합인체진실적운동규률,가이흔호지모의경침부적생물역학특성.
@@@@BACKGROUND:The human tissue exhibits nonlinear property, and the cervical biomechanical characteristics are closely related with the changes of soft tissue material properties. So it is important to establish the nonlinear finite element model that close to the actual property of the human body. @@@@OBJECTIVE:To establish cervical three-dimensional nonlinear finite element model and to verify the effectivity of the model. @@@@METHODS:The C0-C3 spine was scanned by MarConi MX8000 multislice spiral CT machine to obtain the two-dimensional image. The images were read with Dicom format, and then the accurate C0-C3 cervical three-dimensional model was established after image segmentation, data fairing and three-dimensional reconstruction. The model was imported to the ScanFE mode for meshing. Then the model was imported into the ANSYS 10.0 software directly to construct the C0-C3 cervical ligament elements and simulate the force-displacement curve, and thus the cervical three-dimensional nonlinear finite element model was established. After model establishment, 40 N preload was loaded on the vertical y downward direction, and the flexion, extension, lateral bending and rotational motions were simulated with 1.5 N?m torque. The experimental results were compared to examine the stress distribution and clinical consistent degree. @@@@RESULTS AND CONCLUSION:The three-dimensional nonlinear finite element model included 663 551 elements and 178 247 nodes. After loaded with preload and 1.5 N?m torque, the range of motion for occipitoatlantal joint was flexion 13.3°, extension 11.9°, lateral bending 4.3° and rotation 8.7°, the range of motion of atlantoaxial joint was flexion 15.5°, extension 12.6°, lateral bending 6.4° and rotation 30.8°, which consistent with the experimental results of cadaver specimens. Observed from the longitudinal stress distribution of the model, the stress on the backside odontoid process of axis was higher in any condition, and when extension, the region for stress increasing was increased. The upper cervical spine stress distribution mainly located around the vertebral tunnel, while the stress distribution on both end of the lateral mass and the axial transverse process was lower. Comparative study showed that the stresses on C2-C3 joint in flexion, extension, lateral bending and rotation conditions were greater than those on the uncovertebral joint, and the stress distribution of three-dimensional nonlinear finite element model was consistent with the clinical condition. The cervical three-dimensional nonlinear finite element model established with the two-dimensional images, the simple ware and Ansys10.0 software that obtained through multislice spiral CT scan are consistent with the motion law of the human body.