电网技术
電網技術
전망기술
POWER SYSTEM TECHNOLOGY
2013年
6期
1651-1658
,共8页
无功优化%多目标%进化算法%帕累托最优%比较与评估
無功優化%多目標%進化算法%帕纍託最優%比較與評估
무공우화%다목표%진화산법%파루탁최우%비교여평고
optimal reactive power flow%multi-objective%evolutionary algorithm%Pareto optimal%comparison and assessment
多目标进化算法在电力系统无功优化领域已有广泛应用,目前研究主要集中于引入某种单一算法求解该问题,难以全面客观地分析算法的寻优性能.因此选取当前典型的多目标进化算法,从整体角度对它们在无功优化问题中的应用展开比较研究.与传统设定偏好参数、将多目标问题转化为单目标问题的方法不同,直接采用计及系统网损与电压偏移的多目标模型.以IEEE 30节点标准系统的多目标无功优化为算例,从非支配解集质量和多样性、帕累托前沿分布广阔性和均匀性及收敛速度等角度,比较算法的寻优性能,分析其优势或不足.在评估各种算法计算性能的基础上提出了进一步研究的展望.相关结论对多目标进化算法在无功优化问题中的应用和改进具有一定的参考价值.
多目標進化算法在電力繫統無功優化領域已有廣汎應用,目前研究主要集中于引入某種單一算法求解該問題,難以全麵客觀地分析算法的尋優性能.因此選取噹前典型的多目標進化算法,從整體角度對它們在無功優化問題中的應用展開比較研究.與傳統設定偏好參數、將多目標問題轉化為單目標問題的方法不同,直接採用計及繫統網損與電壓偏移的多目標模型.以IEEE 30節點標準繫統的多目標無功優化為算例,從非支配解集質量和多樣性、帕纍託前沿分佈廣闊性和均勻性及收斂速度等角度,比較算法的尋優性能,分析其優勢或不足.在評估各種算法計算性能的基礎上提齣瞭進一步研究的展望.相關結論對多目標進化算法在無功優化問題中的應用和改進具有一定的參攷價值.
다목표진화산법재전력계통무공우화영역이유엄범응용,목전연구주요집중우인입모충단일산법구해해문제,난이전면객관지분석산법적심우성능.인차선취당전전형적다목표진화산법,종정체각도대타문재무공우화문제중적응용전개비교연구.여전통설정편호삼수、장다목표문제전화위단목표문제적방법불동,직접채용계급계통망손여전압편이적다목표모형.이IEEE 30절점표준계통적다목표무공우화위산례,종비지배해집질량화다양성、파루탁전연분포엄활성화균균성급수렴속도등각도,비교산법적심우성능,분석기우세혹불족.재평고각충산법계산성능적기출상제출료진일보연구적전망.상관결론대다목표진화산법재무공우화문제중적응용화개진구유일정적삼고개치.
Multi-objective evolutionary algorithms (MOEAs) are widely applied in optimal reactive power flow (ORPF), at present the research is focused on how to lead in a kind of single algorithm to solve ORPF, however it is difficult to analyze the searching performance of MOEAs comprehensively and objectively. For this reason, current typical MOEAs are selected and from an overall perspective the application of them in ORPF is comparatively researched. Different from traditional approach that combines multiple objective functions into a single one by setting preference parameters, the multi-objective model, in which the system network loss and voltage deviation are taken into account, is directly utilized. Taking multi-objective reactive power optimization in IEEE 30-bus system for example, the optimal performances of five MOEAs were compared and the superiorities and defects of them are analyzed in the viewpoints of quality and diversity of non-dominated solution set, extensity and uniformity of final Pareto front and convergence speed. On the basis of evaluating computing performances of five MOEAs the prospect of further research is put forward.