高校应用数学学报A辑
高校應用數學學報A輯
고교응용수학학보A집
APPLIED MATHEMATICS A JOURNAL OF CHINESE UNIVERSITIES
2013年
2期
180-188
,共9页
韩建邦%沈建和*%周哲彦
韓建邦%瀋建和*%週哲彥
한건방%침건화*%주철언
二次奇摄动问题%无穷边界值%解的行为
二次奇攝動問題%無窮邊界值%解的行為
이차기섭동문제%무궁변계치%해적행위
quadratic singularly perturbed problem%infinite boundary value%asymptotic behaviors
研究一类具有无穷边界值的二次奇摄动Robin边值问题解的存在性与解的渐进行为,重点关注边界值的奇异程度对解的边界层行为的影响;同时将所得的结果与Chang及Howes的结果(带正常边界值)进行比较.研究表明:(1)当边界值大小为O(1/)时,得到的边界层大小为O( ln ),这比Chang及Howes带正常边界值的情形提高了O(ln )量级;(2)增大边界值的奇性至O(1/ r),这里r >1,边界层大小的量级不变,依然为O( ln );(3)若要使得边界层大小为O(1),则边界值的大小需为O(e?1/).最后给出一个算例验证得到的结果.
研究一類具有無窮邊界值的二次奇攝動Robin邊值問題解的存在性與解的漸進行為,重點關註邊界值的奇異程度對解的邊界層行為的影響;同時將所得的結果與Chang及Howes的結果(帶正常邊界值)進行比較.研究錶明:(1)噹邊界值大小為O(1/)時,得到的邊界層大小為O( ln ),這比Chang及Howes帶正常邊界值的情形提高瞭O(ln )量級;(2)增大邊界值的奇性至O(1/ r),這裏r >1,邊界層大小的量級不變,依然為O( ln );(3)若要使得邊界層大小為O(1),則邊界值的大小需為O(e?1/).最後給齣一箇算例驗證得到的結果.
연구일류구유무궁변계치적이차기섭동Robin변치문제해적존재성여해적점진행위,중점관주변계치적기이정도대해적변계층행위적영향;동시장소득적결과여Chang급Howes적결과(대정상변계치)진행비교.연구표명:(1)당변계치대소위O(1/)시,득도적변계층대소위O( ln ),저비Chang급Howes대정상변계치적정형제고료O(ln )량급;(2)증대변계치적기성지O(1/ r),저리r >1,변계층대소적량급불변,의연위O( ln );(3)약요사득변계층대소위O(1),칙변계치적대소수위O(e?1/).최후급출일개산례험증득도적결과.
Existence and asymptotic behaviors of solutions in second-order quadratic singularly perturbed problems with infinite boundary value are studied. The paper focuses on the effects of the singularity of boundary value on the behaviors of solutions and the comparisons between the obtained results in this paper and those of Chang and Howes, where the cases with regular boundary values are considered. It is found that: 1) when the boundary value is O(1/ ), the boundary layer is O( ln ). By comparing that of Chang and Howes, the boundary layer has an O(ln ) increase; 2) when the boundary value is O(1/ r), with r > 1 a constant, the boundary layer is still O( ln );3) to get the O(1) boundary layer, the boundary value must be O(e?1/ ). A typical example is performed to verify the obtained results.