电子测试
電子測試
전자측시
ELECTRONIC TEST
2013年
9期
104-106
,共3页
冯军帅%樊庆文%王德麾%王之魁
馮軍帥%樊慶文%王德麾%王之魁
풍군수%번경문%왕덕휘%왕지괴
高分辨率图像%kmeans自动聚类%椭圆识别%拟合误差
高分辨率圖像%kmeans自動聚類%橢圓識彆%擬閤誤差
고분변솔도상%kmeans자동취류%타원식별%의합오차
high-resolution images%kmeans automatic clustering%ellipse recognition%fitting error
在高分辨率图像中,为获得较高的椭圆目标识别效率与拟合精度,提出了一种利用自动聚类技术优化椭圆识别和拟合的方法.本方法先对原始图像进行降采样;在缩减图的颜色空间中进行kmeans自动聚类并进行原始图像的预分割;经图像连通性分析后,分离出若干目标区域;再利用各目标区域的边界信息拟合椭圆;最后依次经边界长度约束、椭圆方程参数约束、椭圆拟合精度误差指标正确识别出椭圆目标物,并获得较高精度的椭圆方程.实验表明,该方法能够自适应图像质量的较大范围波动,具有较高的识别正确率和拟合精度,同时也兼顾了识别速度,在工业视觉测量领域具有一定的理论和实用价值.
在高分辨率圖像中,為穫得較高的橢圓目標識彆效率與擬閤精度,提齣瞭一種利用自動聚類技術優化橢圓識彆和擬閤的方法.本方法先對原始圖像進行降採樣;在縮減圖的顏色空間中進行kmeans自動聚類併進行原始圖像的預分割;經圖像連通性分析後,分離齣若榦目標區域;再利用各目標區域的邊界信息擬閤橢圓;最後依次經邊界長度約束、橢圓方程參數約束、橢圓擬閤精度誤差指標正確識彆齣橢圓目標物,併穫得較高精度的橢圓方程.實驗錶明,該方法能夠自適應圖像質量的較大範圍波動,具有較高的識彆正確率和擬閤精度,同時也兼顧瞭識彆速度,在工業視覺測量領域具有一定的理論和實用價值.
재고분변솔도상중,위획득교고적타원목표식별효솔여의합정도,제출료일충이용자동취류기술우화타원식별화의합적방법.본방법선대원시도상진행강채양;재축감도적안색공간중진행kmeans자동취류병진행원시도상적예분할;경도상련통성분석후,분리출약간목표구역;재이용각목표구역적변계신식의합타원;최후의차경변계장도약속、타원방정삼수약속、타원의합정도오차지표정학식별출타원목표물,병획득교고정도적타원방정.실험표명,해방법능구자괄응도상질량적교대범위파동,구유교고적식별정학솔화의합정도,동시야겸고료식별속도,재공업시각측량영역구유일정적이론화실용개치.
For high-resolution images,in order to get high efficiency and fitting error of ellipse recognition,a method of optimizing ellipse recognition and fitting by automatic clustering is proposed. Down sampling of the original image is the first step;then kmeans automatic clustering and pre-segmentation of the original image in the color space of reduced image is conducted;after image connectivity analysis,target areas are separated and the boundary information of each target area are used to fit the ellipse;the ellipse object is finally recognized correctly by boundary length constraint, elliptic equation parameter constraints and the indicators of ellipse fitting precision error,with a high accuracy elliptic equation obtained.It is proved by experiments that this method could adapt to the wide fluctuation of the quality of images,and has a high recognition correct rate and fitting accuracy.The speed of recognition is taken into account too.This method has theoretical and practical value in the field of industrial vision measurement.