农业工程学报
農業工程學報
농업공정학보
2013年
11期
248-254
,共7页
汤修映%牛力钊%徐杨*%彭彦昆%马世榜%田潇瑜
湯脩映%牛力釗%徐楊*%彭彥昆%馬世榜%田瀟瑜
탕수영%우력쇠%서양*%팽언곤%마세방%전소유
近红外光谱%无损检测%含水率%偏最小二乘回归%直接正交信号校正
近紅外光譜%無損檢測%含水率%偏最小二乘迴歸%直接正交信號校正
근홍외광보%무손검측%함수솔%편최소이승회귀%직접정교신호교정
near infrared spectroscopy%nondestructive determination%water content%partial least squares regression%direct orthogonal signal correction
生鲜牛肉的含水率对其牛肉的加工、储藏、贸易与食用质量有重要影响,为了提高牛肉的经济价值和食用品质,需要研究牛肉含水率的无损检测技术.以取自不同超市的内蒙小黄牛和鲁西黄牛背最长肌为研究对象,有效样本86个,其中,75%的样本作为校正集,25%的样本作为验证集.采集牛肉新鲜切口处400~1170 nm波长范围内的漫反射光谱,用国标方法测定牛肉含水率.经过多元散射校正(multiplicative scatter correction, MSC)、变量标准化(standard normalized variate, SNV)和直接正交信号校正(direct orthogonal signal correction, DOSC)等方法预处理,在400~1170 nm范围内分别建立多元线性回归(multiple linear regression, MLR)模型、主成分回归(principal component Regression, PCR)模型和偏最小二乘回归(partial least squares regression, PLSR)模型.结果表明使用MSC预处理方法建立的模型预测效果最佳,其中用PLSR建模结果最好,校正集的相关系数和校正标准差分别是0.92和0.0069,验证集的相关系数和验证标准差分别是0.92和0.0047,外部验证的相关系数和验证标准差分别是0.85和0.0054.结果表明,可见/近红外光谱结合MSC预处理方法建立的PLSR模型,可以对牛肉含水率进行准确的快速无损评价,为生鲜牛肉含水率快速无损检测技术的应用提供理论参考.
生鮮牛肉的含水率對其牛肉的加工、儲藏、貿易與食用質量有重要影響,為瞭提高牛肉的經濟價值和食用品質,需要研究牛肉含水率的無損檢測技術.以取自不同超市的內矇小黃牛和魯西黃牛揹最長肌為研究對象,有效樣本86箇,其中,75%的樣本作為校正集,25%的樣本作為驗證集.採集牛肉新鮮切口處400~1170 nm波長範圍內的漫反射光譜,用國標方法測定牛肉含水率.經過多元散射校正(multiplicative scatter correction, MSC)、變量標準化(standard normalized variate, SNV)和直接正交信號校正(direct orthogonal signal correction, DOSC)等方法預處理,在400~1170 nm範圍內分彆建立多元線性迴歸(multiple linear regression, MLR)模型、主成分迴歸(principal component Regression, PCR)模型和偏最小二乘迴歸(partial least squares regression, PLSR)模型.結果錶明使用MSC預處理方法建立的模型預測效果最佳,其中用PLSR建模結果最好,校正集的相關繫數和校正標準差分彆是0.92和0.0069,驗證集的相關繫數和驗證標準差分彆是0.92和0.0047,外部驗證的相關繫數和驗證標準差分彆是0.85和0.0054.結果錶明,可見/近紅外光譜結閤MSC預處理方法建立的PLSR模型,可以對牛肉含水率進行準確的快速無損評價,為生鮮牛肉含水率快速無損檢測技術的應用提供理論參攷.
생선우육적함수솔대기우육적가공、저장、무역여식용질량유중요영향,위료제고우육적경제개치화식용품질,수요연구우육함수솔적무손검측기술.이취자불동초시적내몽소황우화로서황우배최장기위연구대상,유효양본86개,기중,75%적양본작위교정집,25%적양본작위험증집.채집우육신선절구처400~1170 nm파장범위내적만반사광보,용국표방법측정우육함수솔.경과다원산사교정(multiplicative scatter correction, MSC)、변량표준화(standard normalized variate, SNV)화직접정교신호교정(direct orthogonal signal correction, DOSC)등방법예처리,재400~1170 nm범위내분별건립다원선성회귀(multiple linear regression, MLR)모형、주성분회귀(principal component Regression, PCR)모형화편최소이승회귀(partial least squares regression, PLSR)모형.결과표명사용MSC예처리방법건립적모형예측효과최가,기중용PLSR건모결과최호,교정집적상관계수화교정표준차분별시0.92화0.0069,험증집적상관계수화험증표준차분별시0.92화0.0047,외부험증적상관계수화험증표준차분별시0.85화0.0054.결과표명,가견/근홍외광보결합MSC예처리방법건립적PLSR모형,가이대우육함수솔진행준학적쾌속무손평개,위생선우육함수솔쾌속무손검측기술적응용제공이론삼고.
The water content of fresh beef has an important influence on the processing, storage, trade and quality of beef. In order to improve the economic value of beef and eating quality, we should research nondestructive testing technology on water content in beef. A laboratory visible/near-infrared spectroscopy system using visible/near-infrared spectroscopy was build to collect 86 beef samples’reflectance spectra in a rang of 400-1170 nm. The samples are from Inner Mongolia cattle’s and Luxi cattle’s longissimus dorsi in different carcasses for the study, 75%of the samples are used as a calibration set, 25%of the samples are used as a validation set. The diffuse reflectance spectra in the fresh cut of beef were collected, and the water contents of the samples were measured with the national standard. The diffuse reflectance spectra of samples were performed with different pretreatments, such as multiplicative scatter correction (MSC), standard normalized variate (SNV) and direct orthogonal signal correction (DOSC). The prediction model of multiple linear regression (MLR), principal component regression (PCR) and partial least squares regression (PLSR) were constructed for prediction of water content in beef with full-spectrum. Correlation coefficient and standard error between prediction water content and real water content of the samples are taken as evaluation criterions for the prediction modal. In general, the higher correlation coefficient of calibration set with validation set and lower standard error of calibration set with validation set mean higher precision of prediction model. Result shows that multiplicative scatter correction is the best pretreatment, and the performance of models established with PLSR is better than others, its correlation coefficient and standard deviation are 0.92 and 0.0047, respectively. The correlation coefficient and standard deviation of external validation set in PLSR model is 0.85 and 0.0054, respectively. Direct orthogonal signal correction combining with principal component regression and partial least squares regression has a high correlation coefficient in calibration set, but a low correlation coefficient in validation set, because of overfitting. This study demonstrated that the PLSR model built by using visible/near-infrared spectroscopy with multiplicative scatter correction pretreatment can nondestructively and rapidly determine the water content in beef. This research can provide a basis for further developing device of nondestructive and rapid determination of water content in beef.