商丘师范学院学报
商丘師範學院學報
상구사범학원학보
JOURNAL OF SHANGQIU TEACHERS COLLEGE
2013年
6期
5-14
,共10页
三点边值问题%正解%不动点定理%延滞%奇异%锥
三點邊值問題%正解%不動點定理%延滯%奇異%錐
삼점변치문제%정해%불동점정리%연체%기이%추
three point boundary value problem%positive solution%fixed point theorem%delay%singular%cone
讨论带有延滞项的奇异三点边值问题:u″(t)+f (t, u(t -τ))=0, t∈(0,1)\τu( t)=η(t),t∈[-τ,0] u(1)=βu(α)正解的存在性,其中 f 变号且可能在 t =0,t =1,u =0处奇异,文章的最后给出了这个定理的具体应用.(1)
討論帶有延滯項的奇異三點邊值問題:u″(t)+f (t, u(t -τ))=0, t∈(0,1)\τu( t)=η(t),t∈[-τ,0] u(1)=βu(α)正解的存在性,其中 f 變號且可能在 t =0,t =1,u =0處奇異,文章的最後給齣瞭這箇定理的具體應用.(1)
토론대유연체항적기이삼점변치문제:u″(t)+f (t, u(t -τ))=0, t∈(0,1)\τu( t)=η(t),t∈[-τ,0] u(1)=βu(α)정해적존재성,기중 f 변호차가능재 t =0,t =1,u =0처기이,문장적최후급출료저개정리적구체응용.(1)
@@@@In this paper,we consider the existence of positive solutions for the following boundary value problem with changing sign nolinearity:u ″(t) +f(t,u(t -τ)) =0,t∈(0,1) \τu(t) =η(t),t∈[ -τ,0] u(1) =βu(α) Where f is sigh -changing nonlinearity and it may be singular at t =0,t =1,u =0.In the end of the paper we give an example of the theorem.