物理学报
物理學報
물이학보
2013年
11期
61-65
,共5页
秦帅锋%郑公平?%马骁%李海燕%童晶晶%杨博
秦帥鋒%鄭公平?%馬驍%李海燕%童晶晶%楊博
진수봉%정공평?%마효%리해연%동정정%양박
三阱光学超晶格%自旋为1的原子%弱磁场
三阱光學超晶格%自鏇為1的原子%弱磁場
삼정광학초정격%자선위1적원자%약자장
three-well optical superlattice%spin-1 atom%weak magnetic field
双阱光学超晶格中的超冷原子是近期冷原子物理领域的研究热点.本文推广提出了实现三阱光学超晶格的方案,并采用精确对角化的方法分别研究了弱磁场下对称三阱光学超晶格中铁磁性和反铁磁性的自旋为1的原子系统的基态,发现二者的相图很不相同:反铁磁性原子对应的相图中没有沿磁场方向总自旋磁量子数为±2的基态,而铁磁性原子对应的相图中可能有.在负的二次塞曼能量区域,铁磁性原子的相图中只有完全极化态.分析了可控参数影响基态的物理本质.由于这些量子自旋态可以通过调节外磁场和光势垒的高度非常简便而精确地控制,适合用来研究自旋纠缠.
雙阱光學超晶格中的超冷原子是近期冷原子物理領域的研究熱點.本文推廣提齣瞭實現三阱光學超晶格的方案,併採用精確對角化的方法分彆研究瞭弱磁場下對稱三阱光學超晶格中鐵磁性和反鐵磁性的自鏇為1的原子繫統的基態,髮現二者的相圖很不相同:反鐵磁性原子對應的相圖中沒有沿磁場方嚮總自鏇磁量子數為±2的基態,而鐵磁性原子對應的相圖中可能有.在負的二次塞曼能量區域,鐵磁性原子的相圖中隻有完全極化態.分析瞭可控參數影響基態的物理本質.由于這些量子自鏇態可以通過調節外磁場和光勢壘的高度非常簡便而精確地控製,適閤用來研究自鏇糾纏.
쌍정광학초정격중적초랭원자시근기랭원자물리영역적연구열점.본문추엄제출료실현삼정광학초정격적방안,병채용정학대각화적방법분별연구료약자장하대칭삼정광학초정격중철자성화반철자성적자선위1적원자계통적기태,발현이자적상도흔불상동:반철자성원자대응적상도중몰유연자장방향총자선자양자수위±2적기태,이철자성원자대응적상도중가능유.재부적이차새만능량구역,철자성원자적상도중지유완전겁화태.분석료가공삼수영향기태적물리본질.유우저사양자자선태가이통과조절외자장화광세루적고도비상간편이정학지공제,괄합용래연구자선규전.
Ultracold atoms trapped in an optical lattice of double-well potential, the so-called optical superlattice, have received much attention in the field of cold atoms. A protocol generalized to three-well optical superlattice is suggested in this paper. The ground-state diagrams of ultracold spin-1 atoms trapped in a symmetric three-well optical superlattice in a weak magnetic field are studied based on the exact diagonalization. It is shown that the ground-state diagrams are remarkably different for the ferromagnetic and antiferromagnetic atoms. There does not exist the type of ground state for the antiferromagnetic interaction atoms, where the magnetic quantum number of the total spin of the system along the external magnetic field are ±2. But for the ferromagnetic interaction atoms, there do exist. In addition, there exist only the fully polarized ground-states for the ferromagnetic atoms in the negative quadratic-Zeeman-energy region. The physicsal origin of the dependence of the ground states on the controllable parameters are analyzed. These quantum spin-states can be controlled easily and exactly by modulating the external magnetic field and the height of the optical barrier, which may be a tool for the study of spin-entanglement.