物理学报
物理學報
물이학보
2013年
11期
196-203
,共8页
李松?%韩立波%陈善俊%段传喜
李鬆?%韓立波%陳善俊%段傳喜
리송?%한립파%진선준%단전희
势能曲线%解析势能函数%光谱常数%振动能级
勢能麯線%解析勢能函數%光譜常數%振動能級
세능곡선%해석세능함수%광보상수%진동능급
potential energy curve%analytical potential energy function%spectroscopic parameters%vibrational lev-els
采用耦合簇CCSD(T)方法结合系列相关一致基组aug-cc-pVXZ (X=D,T,Q,5)对基态SN?分子离子(X3Σ?)进行了结构优化和单点能扫描计算.用四种方法进行基组外推得到该体系的平衡核间距Re=0.15852 nm,谐振频率ωe=948.05 cm?1,离解能De=3.934 eV均与实验数据符合得很好.对单点能扫描结果用9参数Murrell-Sorbie势能函数进行了最小二乘拟合,得到了体系的解析势能函数表达式,并进一步推导出了体系的力常数和光谱常数.拟合所得势能曲线准确地再现了SN?分子离子的离解能和平衡结构特征.通过求解核运动的径向薛定谔方程,得到了无转动SN?(X3Σ?)的全部振动态,并进一步计算出了各振动能级相应的分子常数.与实验结果及其他理论研究结果的对比表明,本文关于SN?分子离子平衡常数和光谱常数的计算结果达到了较高的精度,能为进一步的实验探测和理论研究提供参考依据.
採用耦閤簇CCSD(T)方法結閤繫列相關一緻基組aug-cc-pVXZ (X=D,T,Q,5)對基態SN?分子離子(X3Σ?)進行瞭結構優化和單點能掃描計算.用四種方法進行基組外推得到該體繫的平衡覈間距Re=0.15852 nm,諧振頻率ωe=948.05 cm?1,離解能De=3.934 eV均與實驗數據符閤得很好.對單點能掃描結果用9參數Murrell-Sorbie勢能函數進行瞭最小二乘擬閤,得到瞭體繫的解析勢能函數錶達式,併進一步推導齣瞭體繫的力常數和光譜常數.擬閤所得勢能麯線準確地再現瞭SN?分子離子的離解能和平衡結構特徵.通過求解覈運動的徑嚮薛定諤方程,得到瞭無轉動SN?(X3Σ?)的全部振動態,併進一步計算齣瞭各振動能級相應的分子常數.與實驗結果及其他理論研究結果的對比錶明,本文關于SN?分子離子平衡常數和光譜常數的計算結果達到瞭較高的精度,能為進一步的實驗探測和理論研究提供參攷依據.
채용우합족CCSD(T)방법결합계렬상관일치기조aug-cc-pVXZ (X=D,T,Q,5)대기태SN?분자리자(X3Σ?)진행료결구우화화단점능소묘계산.용사충방법진행기조외추득도해체계적평형핵간거Re=0.15852 nm,해진빈솔ωe=948.05 cm?1,리해능De=3.934 eV균여실험수거부합득흔호.대단점능소묘결과용9삼수Murrell-Sorbie세능함수진행료최소이승의합,득도료체계적해석세능함수표체식,병진일보추도출료체계적력상수화광보상수.의합소득세능곡선준학지재현료SN?분자리자적리해능화평형결구특정.통과구해핵운동적경향설정악방정,득도료무전동SN?(X3Σ?)적전부진동태,병진일보계산출료각진동능급상응적분자상수.여실험결과급기타이론연구결과적대비표명,본문관우SN?분자리자평형상수화광보상수적계산결과체도료교고적정도,능위진일보적실험탐측화이론연구제공삼고의거.
The molecular structure of the ground electronic state (X3Σ?) of SN?molecular ion has been calculated by using the CCSD(T) method in combination with the correlation-consistent basis sets aug-cc-pVXZ (X=D,T,Q,5). The equilibrium internuclear distance Re, harmonic frequencyωe and dissociation energy De of the molecular ion are derived and are extrapolated to the complete basis set limit. Comparisons of corresponding parameters between this work and those reported previously indicate our results agree well with the experimental data. A reliable potential energy curve is obtained and is perfectly reproduced in the form of the Murrell-Sorbie analytical potential function. We have utilized the potential energy curve to calculate the relevant spectroscopic parameters of the ground state of the system. The vibrational levels and corresponding molecular constants for the X3Σ?state are obtained by solving the radial Schr¨odinger equation of the nuclear motion. Calculations in the present work indicate that an improvement in theoretical computations of SN?molecular ion is achieved.