物理学报
物理學報
물이학보
2013年
11期
451-458
,共8页
张盼君%孙慧卿?%郭志友%王度阳%谢晓宇%蔡金鑫%郑欢%谢楠%杨斌
張盼君%孫慧卿?%郭誌友%王度暘%謝曉宇%蔡金鑫%鄭歡%謝楠%楊斌
장반군%손혜경?%곽지우%왕도양%사효우%채금흠%정환%사남%양빈
GaN%量子点%光谱调控%双波长LED
GaN%量子點%光譜調控%雙波長LED
GaN%양자점%광보조공%쌍파장LED
GaN%quantum dots%spectrum-control%dual-wavelength LED
本文通过对含有高In组分量子点的双波长LED进行了模拟计算,并对器件的能带结构、载流子浓度、复合速率和辐射光谱进行了研究.通过对器件结构的调整与对比,发现蓝绿双波长LED的绿光量子阱中加入高In组分量子点后可以拓宽辐射光谱,使LED光谱具有更高的显色指数,为实现无荧光粉的白光LED提供指导.量子点对载流子具有很强的束缚能力,并且载流子在量子点处具有更短的寿命,载流子优先在量子点处复合,量子点处所对应的黄光与量子阱润湿层所对应的绿光的比例随量子点浓度的增大而增大,载流子浓度较低时以量子点处的黄光辐射为主,载流子浓度变大后,量子点复合逐渐达到饱和,绿光辐射开始占据主导.对间隔层厚度和间隔层掺杂浓度的调节可以很方便地调控载流子的分布,从而实现对含有量子点的双波长LED两个活性层辐射速率的调控.结果表明,通过对量子点浓度、间隔层厚度、间隔层掺杂浓度的控节可以很好地实现对LED辐射光谱的调控作用.
本文通過對含有高In組分量子點的雙波長LED進行瞭模擬計算,併對器件的能帶結構、載流子濃度、複閤速率和輻射光譜進行瞭研究.通過對器件結構的調整與對比,髮現藍綠雙波長LED的綠光量子阱中加入高In組分量子點後可以拓寬輻射光譜,使LED光譜具有更高的顯色指數,為實現無熒光粉的白光LED提供指導.量子點對載流子具有很彊的束縳能力,併且載流子在量子點處具有更短的壽命,載流子優先在量子點處複閤,量子點處所對應的黃光與量子阱潤濕層所對應的綠光的比例隨量子點濃度的增大而增大,載流子濃度較低時以量子點處的黃光輻射為主,載流子濃度變大後,量子點複閤逐漸達到飽和,綠光輻射開始佔據主導.對間隔層厚度和間隔層摻雜濃度的調節可以很方便地調控載流子的分佈,從而實現對含有量子點的雙波長LED兩箇活性層輻射速率的調控.結果錶明,通過對量子點濃度、間隔層厚度、間隔層摻雜濃度的控節可以很好地實現對LED輻射光譜的調控作用.
본문통과대함유고In조분양자점적쌍파장LED진행료모의계산,병대기건적능대결구、재류자농도、복합속솔화복사광보진행료연구.통과대기건결구적조정여대비,발현람록쌍파장LED적록광양자정중가입고In조분양자점후가이탁관복사광보,사LED광보구유경고적현색지수,위실현무형광분적백광LED제공지도.양자점대재류자구유흔강적속박능력,병차재류자재양자점처구유경단적수명,재류자우선재양자점처복합,양자점처소대응적황광여양자정윤습층소대응적록광적비례수양자점농도적증대이증대,재류자농도교저시이양자점처적황광복사위주,재류자농도변대후,양자점복합축점체도포화,록광복사개시점거주도.대간격층후도화간격층참잡농도적조절가이흔방편지조공재류자적분포,종이실현대함유양자점적쌍파장LED량개활성층복사속솔적조공.결과표명,통과대양자점농도、간격층후도、간격층참잡농도적공절가이흔호지실현대LED복사광보적조공작용.
A theoretical simulation of electrical and optical characteristics of GaN-based dual-wavelength light-emitting diodes (LED) with high In content in the quantum dots (QDs) which are planted in quantum wells is conducted with APSYS software. The adjustment and contrast of the structure of the devices showed that the blue and green dual-wavelength LEDs will have a broader radiation spectrum and a higher color rendering index when QDs are planted in the green quantum wells. QDs have strong blinding capacity with the carriers, and the carriers at the QDs have shorter lifetime than they are in the wetting layers, so the carrier recombination will give preference to the QDs. It is shown that the distribution of the carriers could be easily controlled by adjusting the spacing layer thickness and the spacing layer doping concentration, so as to control the radiation rate of the two active layers of the dual-wavelength LEDs. Therefore, the spectrum-control of the dual-wavelength LED with QDs planted in QWs could be realized by adjusting the concentration of quantum dots, the thickness of the spacing layer and the doping concentration in the spacing layer. This article can provide guidance for the realization of the non-phosphor white LED.