物理学报
物理學報
물이학보
2013年
11期
536-545
,共10页
系统规模%群体感应%群体行为%耦合振子
繫統規模%群體感應%群體行為%耦閤振子
계통규모%군체감응%군체행위%우합진자
system size%quorum sensing%population behavior%coupled oscillators
影响细胞群体行为的因素是多种多样的,除了以前研究的细胞通讯方式和环境因素外,还与现有文献没有或很少研究的细胞数目(即系统规模)有关.本文研究了系统规模对一类合成多细胞通讯系统的聚类行为的影响.在该系统中,单个系统是由压制振动子和基于延迟的松弛振子整合而成的振子,而振子之间通过群体感应机制相互耦合.通过分岔分析和数值模拟发现:细胞数目的增加不仅可以改变平衡态聚类稳定性区间的大小并诱导新的聚类行为,而且有利于扩大平衡态聚类的吸引域,表明细胞分化可能与系统规模有密切关系;细胞数目的增加还可以极大地丰富平衡态聚类和振动聚类的表现形式和共存方式,为生物体对环境的适应性提供了良好的基础.我们的结果不仅扩充了耦合系统的动力学行为,也为理解多细胞现象奠定了基础.
影響細胞群體行為的因素是多種多樣的,除瞭以前研究的細胞通訊方式和環境因素外,還與現有文獻沒有或很少研究的細胞數目(即繫統規模)有關.本文研究瞭繫統規模對一類閤成多細胞通訊繫統的聚類行為的影響.在該繫統中,單箇繫統是由壓製振動子和基于延遲的鬆弛振子整閤而成的振子,而振子之間通過群體感應機製相互耦閤.通過分岔分析和數值模擬髮現:細胞數目的增加不僅可以改變平衡態聚類穩定性區間的大小併誘導新的聚類行為,而且有利于擴大平衡態聚類的吸引域,錶明細胞分化可能與繫統規模有密切關繫;細胞數目的增加還可以極大地豐富平衡態聚類和振動聚類的錶現形式和共存方式,為生物體對環境的適應性提供瞭良好的基礎.我們的結果不僅擴充瞭耦閤繫統的動力學行為,也為理解多細胞現象奠定瞭基礎.
영향세포군체행위적인소시다충다양적,제료이전연구적세포통신방식화배경인소외,환여현유문헌몰유혹흔소연구적세포수목(즉계통규모)유관.본문연구료계통규모대일류합성다세포통신계통적취류행위적영향.재해계통중,단개계통시유압제진동자화기우연지적송이진자정합이성적진자,이진자지간통과군체감응궤제상호우합.통과분차분석화수치모의발현:세포수목적증가불부가이개변평형태취류은정성구간적대소병유도신적취류행위,이차유리우확대평형태취류적흡인역,표명세포분화가능여계통규모유밀절관계;세포수목적증가환가이겁대지봉부평형태취류화진동취류적표현형식화공존방식,위생물체대배경적괄응성제공료량호적기출.아문적결과불부확충료우합계통적동역학행위,야위리해다세포현상전정료기출.
There are many factors to influence the population behavior of cells. Except for the ways of cellular communication and the cellular environment, Which have been considered in the previous studies, the number of cells (or system size) that has been little considered before is also an important factor. This article investigates effects of system size on clustering behavior in a synthetic multicellular system, where individual oscillators are an integration of repressilator and hysteresis-based oscillators and are coupled through a quorum-sensing mechanism. By bifurcation analysis and numerical simulation, we find that increasing the cell number not only can change the size of the stability interval of steady state clusters and induce new clustering behaviors, but also benefits the enlargement of the attraction basin of steady state clusters, implying that cell differentiation may be closely related to the system size. In addition, such an increase can greatly extend the kinds and coexisting modes of steady state and oscillatory clusters, which would provide a good basis for the adaptability of organisms to the environment. Our results have extended the connotation of dynamics of coupled systems and also may be the foundation for understanding multicellular phenomena.