中国有色金属学报
中國有色金屬學報
중국유색금속학보
THE CHINESE JOURNAL OF NONFERROUS METALS
2013年
5期
1255-1261
,共7页
AZ31B/Cu 异种金属%过渡液相扩散焊%显微组织%性能
AZ31B/Cu 異種金屬%過渡液相擴散銲%顯微組織%性能
AZ31B/Cu 이충금속%과도액상확산한%현미조직%성능
AZ31B/Cu dissimilar metals%transient liquid-phase bonding%microstructure%properties
采用过渡液相扩散焊技术对镁合金AZ31B和Cu异种金属进行焊接,利用扫描电镜(SEM)、显微硬度测试及X射线衍射(XRD)对AZ31B/Cu接头界面附近的显微组织及性能进行研究.结果表明,在500℃、40 min、2.5 MPa条件下,AZ31B/Cu接头形成了宽度约为450μm的扩散区.AZ31B/Cu材料接头的显微组织依次为α-Mg和沿其晶界析出相Mg17(Cu, Al)12组成的晶界渗透层/(α-Mg+Mg2Cu)共晶层/Cu2Mg金属间化合物层/(α-Mg+Mg2Cu)共晶层/Cu(Mg)固溶体.随着保温时间的延长,界面区宽度增加,其中Cu2Mg两侧的共晶组织区的增加更为显著.界面区的显微硬度明显高于镁合金和铜基体的显微硬度,界面区明显存在4个不同的硬度分布区;随着保温时间的延长,界面区的显微硬度提高.
採用過渡液相擴散銲技術對鎂閤金AZ31B和Cu異種金屬進行銲接,利用掃描電鏡(SEM)、顯微硬度測試及X射線衍射(XRD)對AZ31B/Cu接頭界麵附近的顯微組織及性能進行研究.結果錶明,在500℃、40 min、2.5 MPa條件下,AZ31B/Cu接頭形成瞭寬度約為450μm的擴散區.AZ31B/Cu材料接頭的顯微組織依次為α-Mg和沿其晶界析齣相Mg17(Cu, Al)12組成的晶界滲透層/(α-Mg+Mg2Cu)共晶層/Cu2Mg金屬間化閤物層/(α-Mg+Mg2Cu)共晶層/Cu(Mg)固溶體.隨著保溫時間的延長,界麵區寬度增加,其中Cu2Mg兩側的共晶組織區的增加更為顯著.界麵區的顯微硬度明顯高于鎂閤金和銅基體的顯微硬度,界麵區明顯存在4箇不同的硬度分佈區;隨著保溫時間的延長,界麵區的顯微硬度提高.
채용과도액상확산한기술대미합금AZ31B화Cu이충금속진행한접,이용소묘전경(SEM)、현미경도측시급X사선연사(XRD)대AZ31B/Cu접두계면부근적현미조직급성능진행연구.결과표명,재500℃、40 min、2.5 MPa조건하,AZ31B/Cu접두형성료관도약위450μm적확산구.AZ31B/Cu재료접두적현미조직의차위α-Mg화연기정계석출상Mg17(Cu, Al)12조성적정계삼투층/(α-Mg+Mg2Cu)공정층/Cu2Mg금속간화합물층/(α-Mg+Mg2Cu)공정층/Cu(Mg)고용체.수착보온시간적연장,계면구관도증가,기중Cu2Mg량측적공정조직구적증가경위현저.계면구적현미경도명현고우미합금화동기체적현미경도,계면구명현존재4개불동적경도분포구;수착보온시간적연장,계면구적현미경도제고.
Magnesium alloy AZ31B and Cu dissimilar metals were bonded by the transient liquid-phase diffusion bonding(TLP) process. The microstructures and properties of AZ31B/Cu TLP bonded joint were researched by SEM, micro-hardness test and XRD. The results show that under the condition of 500℃, 40 min and 2.5 MPa, the diffusion interface zone with a width of about 450μm forms in TLP bonded joint of AZ31B/Cu. The microstructures of AZ31B/Cu TLP bonded joint include the grain boundary penetration layer composed of α-Mg and Mg17(Cu, Al)12 precipitated along the grain boundary ofα-Mg solid solution, eutectic ofα-Mg and Mg2Cu, intermetallic compound Cu2Mg, eutectic ofα-Mg and Mg2Cu, and Cu(Mg) solid solution, respectively. The interfacial width increases with increasing the holding time, and the width of eutectic beside Cu2Mg layer in interface zone increases obviously. The micro-hardness of the interface zone is much higher than that of magnesium alloy and copper, and there are obvious four hardness distribution areas. The microhardness of the interface increases with increasing the holding time.