振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2015年
2期
171-175
,共5页
胡玉梅%周英杰%朱浩%陈先亮%孙吉明%皮阳军
鬍玉梅%週英傑%硃浩%陳先亮%孫吉明%皮暘軍
호옥매%주영걸%주호%진선량%손길명%피양군
加速度积分%位移%频域积分%误差控制
加速度積分%位移%頻域積分%誤差控製
가속도적분%위이%빈역적분%오차공제
acceleration integration%displacement%integration in frequency domain%error control
针对工程测试中利用振动加速度积分获得位移时出现严重趋势项误差问题,采用低频衰减算法对加速度信号在频率内直接积分,并利用积分精度控制方程保证积分精度。通过与积分算法比较及验证,证明该算法对积分误差控制具有一定优势。搭建含限位冲击的振动测试实验台,研究该算法在工程测试中应用特性。实验研究表明,该算法可有效控制趋势项误差,且随待积分加速度基频提高积分所得位移信号与真实位移信号吻合度提升。基于所用测试系统,加速度信号基频超过3.8 Hz 时积分幅值误差小于10%,满足工程测试需要;加速度基频大于4.35 Hz 时积分峰值误差小于5%,可获得较好测试效果。
針對工程測試中利用振動加速度積分穫得位移時齣現嚴重趨勢項誤差問題,採用低頻衰減算法對加速度信號在頻率內直接積分,併利用積分精度控製方程保證積分精度。通過與積分算法比較及驗證,證明該算法對積分誤差控製具有一定優勢。搭建含限位遲擊的振動測試實驗檯,研究該算法在工程測試中應用特性。實驗研究錶明,該算法可有效控製趨勢項誤差,且隨待積分加速度基頻提高積分所得位移信號與真實位移信號吻閤度提升。基于所用測試繫統,加速度信號基頻超過3.8 Hz 時積分幅值誤差小于10%,滿足工程測試需要;加速度基頻大于4.35 Hz 時積分峰值誤差小于5%,可穫得較好測試效果。
침대공정측시중이용진동가속도적분획득위이시출현엄중추세항오차문제,채용저빈쇠감산법대가속도신호재빈솔내직접적분,병이용적분정도공제방정보증적분정도。통과여적분산법비교급험증,증명해산법대적분오차공제구유일정우세。탑건함한위충격적진동측시실험태,연구해산법재공정측시중응용특성。실험연구표명,해산법가유효공제추세항오차,차수대적분가속도기빈제고적분소득위이신호여진실위이신호문합도제승。기우소용측시계통,가속도신호기빈초과3.8 Hz 시적분폭치오차소우10%,만족공정측시수요;가속도기빈대우4.35 Hz 시적분봉치오차소우5%,가획득교호측시효과。
The paper presents the results of an integration algorithm developed to reduce the trend of error that usually appears in the process of acceleration integration for displacement in engineering test.The integration of acceleration was conducted directly in frequency domain and the integral accuracy was governed by a controlling equation. Experiments were conducted to compare the integration algorithm with conventional methods and the results indicate that it is privileged to better control the trend of error.Vibration experiments with impact of limit displacement were introduced to investigate the characteristics of the integration algorithm.It's to be noted that the integral trend of error is reduced effectively by the integration algorithm,and it is decreasing with increasing acceleration baseband.The magnitude of integral error is less than 10% while the baseband of the acceleration signal exceeds 3.8 Hz and less than 5% while exceeds 4.35 Hz,which could satisfy the engineering requirements more effectively.