电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2014年
12期
2986-2993
,共8页
陈一畅%张群%陈校平%罗迎%顾福飞
陳一暢%張群%陳校平%囉迎%顧福飛
진일창%장군%진교평%라영%고복비
SAR%压缩感知%稀疏步进频率信号%单重测量矢量%多重测量矢量
SAR%壓縮感知%稀疏步進頻率信號%單重測量矢量%多重測量矢量
SAR%압축감지%희소보진빈솔신호%단중측량시량%다중측량시량
SAR%Compressed Sensing (CS)%Sparse frequency-stepped signal%Single measurement vector%Multiple measurement vectors
基于压缩感知(Compressed Sensing, CS)的合成孔径雷达(SAR)成像算法可以用低于Nyquist采样率的采样数据完成稀疏目标高分辨成像。然而已有的算法在重构1维距离像时采用的大都是单重测量矢量(Single Measurement Vectors, SMV)模型,存在着重构耗时长、受噪声干扰大的缺点。该文从压缩感知的多重测量矢量(Multiple Measurement Vectors, MMV)模型出发,利用多重测量矢量恢复具有相同稀疏结构的联合稀疏目标信号源,从理论与实验角度分析了基于MMV模型的SAR 1维距离像成像性能,提出了一种距离向基于MMV模型,方位向基于SMV模型的2维SAR成像算法。该算法从耗时上、重构精度上均优于SMV模型下的CS成像算法。通过对仿真数据和地基雷达实测数据的处理,验证了算法的有效性。
基于壓縮感知(Compressed Sensing, CS)的閤成孔徑雷達(SAR)成像算法可以用低于Nyquist採樣率的採樣數據完成稀疏目標高分辨成像。然而已有的算法在重構1維距離像時採用的大都是單重測量矢量(Single Measurement Vectors, SMV)模型,存在著重構耗時長、受譟聲榦擾大的缺點。該文從壓縮感知的多重測量矢量(Multiple Measurement Vectors, MMV)模型齣髮,利用多重測量矢量恢複具有相同稀疏結構的聯閤稀疏目標信號源,從理論與實驗角度分析瞭基于MMV模型的SAR 1維距離像成像性能,提齣瞭一種距離嚮基于MMV模型,方位嚮基于SMV模型的2維SAR成像算法。該算法從耗時上、重構精度上均優于SMV模型下的CS成像算法。通過對倣真數據和地基雷達實測數據的處理,驗證瞭算法的有效性。
기우압축감지(Compressed Sensing, CS)적합성공경뢰체(SAR)성상산법가이용저우Nyquist채양솔적채양수거완성희소목표고분변성상。연이이유적산법재중구1유거리상시채용적대도시단중측량시량(Single Measurement Vectors, SMV)모형,존재착중구모시장、수조성간우대적결점。해문종압축감지적다중측량시량(Multiple Measurement Vectors, MMV)모형출발,이용다중측량시량회복구유상동희소결구적연합희소목표신호원,종이론여실험각도분석료기우MMV모형적SAR 1유거리상성상성능,제출료일충거리향기우MMV모형,방위향기우SMV모형적2유SAR성상산법。해산법종모시상、중구정도상균우우SMV모형하적CS성상산법。통과대방진수거화지기뢰체실측수거적처리,험증료산법적유효성。
The SAR imaging algorithm based on Compressed Sensing (CS), could complete the high-resolution imaging of sparse target with the sampling data below the Nyquist sampling rate. However, the Single Measurement Vectors (SMV) model used for range profile reconstruction in existing algorithms, is time-consuming and noise-affected. Based on the Multiple Measurement Vectors (MMV) model, this paper proposes to recovery the joint sparse target signal source of the same sparse structure by MMV. The range profile imaging performance is analyzed theoretically and experimentally. Then, a 2-D SAR imaging algorithm, in which the range imaging is realized based on MMV model and azimuth imaging is realized based on SMV model, is proposed. This algorithm is superior to the SMV-based CS algorithm both on time-consuming and reconstruction precision. The processing of simulation data and radar measured data verifies the effectiveness of this algorithm.