电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2014年
12期
2949-2955
,共7页
冯博%陈渤%王鹏辉%刘宏伟
馮博%陳渤%王鵬輝%劉宏偉
풍박%진발%왕붕휘%류굉위
雷达自动目标识别%高分辨距离像%深层网络%堆栈联合稳健自编码器
雷達自動目標識彆%高分辨距離像%深層網絡%堆棧聯閤穩健自編碼器
뢰체자동목표식별%고분변거리상%심층망락%퇴잔연합은건자편마기
Radar Automatic Target Recognition (RATR)%High Resolution Range Profile (HRRP)%Deep networks%Stacked Robust Auto-Encoders (SRAEs)
特征提取是雷达高分辨距离像(HRRP)目标识别的核心技术。传统的特征提取算法多采用浅层的模型结构,容易忽视样本的内在结构,不利于学习有效的分类特征。针对这一问题,该文利用多层非线性网络实现特征学习,构建了基于深层网络的雷达HRRP目标识别框架。利用平均像在散射点不发生越距离单元走动的方位帧内具有稳健物理特性的性质,提出了堆栈联合稳健自编码器。该网络由一系列联合稳健自编码器堆栈化实现,在匹配原始HRRP 样本的同时,约束同帧样本趋近于平均像,并将网络的最终输出作为分类器的特征输入。基于实测 HRRP数据的实验结果验证了所提算法的有效性。
特徵提取是雷達高分辨距離像(HRRP)目標識彆的覈心技術。傳統的特徵提取算法多採用淺層的模型結構,容易忽視樣本的內在結構,不利于學習有效的分類特徵。針對這一問題,該文利用多層非線性網絡實現特徵學習,構建瞭基于深層網絡的雷達HRRP目標識彆框架。利用平均像在散射點不髮生越距離單元走動的方位幀內具有穩健物理特性的性質,提齣瞭堆棧聯閤穩健自編碼器。該網絡由一繫列聯閤穩健自編碼器堆棧化實現,在匹配原始HRRP 樣本的同時,約束同幀樣本趨近于平均像,併將網絡的最終輸齣作為分類器的特徵輸入。基于實測 HRRP數據的實驗結果驗證瞭所提算法的有效性。
특정제취시뢰체고분변거리상(HRRP)목표식별적핵심기술。전통적특정제취산법다채용천층적모형결구,용역홀시양본적내재결구,불리우학습유효적분류특정。침대저일문제,해문이용다층비선성망락실현특정학습,구건료기우심층망락적뢰체HRRP목표식별광가。이용평균상재산사점불발생월거리단원주동적방위정내구유은건물리특성적성질,제출료퇴잔연합은건자편마기。해망락유일계렬연합은건자편마기퇴잔화실현,재필배원시HRRP 양본적동시,약속동정양본추근우평균상,병장망락적최종수출작위분류기적특정수입。기우실측 HRRP수거적실험결과험증료소제산법적유효성。
Feature extraction is the key technique for Radar Automatic Target Recognition (RATR) based on High Resolution Range Profile (HRRP). Traditional feature extraction algorithms usually use shallow models. When applying such models, the inherent structure of the target is always ignored, which is disadvantageous for learning effective features. To address this issue, a deep framework for radar HRRP target recognition is proposed, which adopts multi-layered nonlinear networks for feature learning. Ground on the stable physical properties of the average profile in each HRRP frame without migration through resolution cell, Stacked Robust Auto-Encoders (SRAEs) are further developed, which are stacked by a series of RAEs. SRAEs can not only reconstruct the original HRRP samples, but also constrain the HRRPs in one frame close to the average profile. Then the top-level output of the networks is used as the input to the classifier. Experimental results on measured radar HRRP dataset validate the effectiveness of the proposed method.