电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2014年
12期
2942-2948
,共7页
孙玉宝%李欢%吴敏%吴泽彬%贺金平%刘青山
孫玉寶%李歡%吳敏%吳澤彬%賀金平%劉青山
손옥보%리환%오민%오택빈%하금평%류청산
高光谱图像%压缩感知%多测量向量%图稀疏%交替方向乘子法
高光譜圖像%壓縮感知%多測量嚮量%圖稀疏%交替方嚮乘子法
고광보도상%압축감지%다측량향량%도희소%교체방향승자법
Hyperspectral image%Compressed Sensing (CS)%Multiple measurement vectors%Graph structured sparsity%Alternated direction method of multiplier
压缩感知重建是解决高光谱现有成像模式数据量大冗余度高问题的一个有效机制。针对高光谱图像的多通道特性,该文建立了高光谱压缩感知的多测量向量模型,编码端使用随机卷积算子对各通道进行快速采样,生成测量向量矩阵。解码端构建图稀疏正则化的联合重建模型,在稀疏变换域将高光谱图像分解为谱间的关联成分和差异成分,通过图结构化稀疏度量表征关联成分的空谱相关性,并约束谱间差异成分的稀疏性。进一步提出模型求解的交替方向乘子迭代算法,通过引入辅助变量与线性化技巧,使得每一子问题均存在解析解,降低了模型求解的复杂度。对多个实测数据集进行了对比实验,实验结果验证了该文模型与算法的有效性。
壓縮感知重建是解決高光譜現有成像模式數據量大冗餘度高問題的一箇有效機製。針對高光譜圖像的多通道特性,該文建立瞭高光譜壓縮感知的多測量嚮量模型,編碼耑使用隨機捲積算子對各通道進行快速採樣,生成測量嚮量矩陣。解碼耑構建圖稀疏正則化的聯閤重建模型,在稀疏變換域將高光譜圖像分解為譜間的關聯成分和差異成分,通過圖結構化稀疏度量錶徵關聯成分的空譜相關性,併約束譜間差異成分的稀疏性。進一步提齣模型求解的交替方嚮乘子迭代算法,通過引入輔助變量與線性化技巧,使得每一子問題均存在解析解,降低瞭模型求解的複雜度。對多箇實測數據集進行瞭對比實驗,實驗結果驗證瞭該文模型與算法的有效性。
압축감지중건시해결고광보현유성상모식수거량대용여도고문제적일개유효궤제。침대고광보도상적다통도특성,해문건립료고광보압축감지적다측량향량모형,편마단사용수궤권적산자대각통도진행쾌속채양,생성측량향량구진。해마단구건도희소정칙화적연합중건모형,재희소변환역장고광보도상분해위보간적관련성분화차이성분,통과도결구화희소도량표정관련성분적공보상관성,병약속보간차이성분적희소성。진일보제출모형구해적교체방향승자질대산법,통과인입보조변량여선성화기교,사득매일자문제균존재해석해,강저료모형구해적복잡도。대다개실측수거집진행료대비실험,실험결과험증료해문모형여산법적유효성。
Compressed Sensing (CS) reconstruction of hyperspectral image is an effective mechanism to comedy the traditional hyperspectral imaging pattern with the drawback of high redundancy and vast data volume. This paper presents a new multiple measurement vector model for compressed sensing reconstruction of hyperspectral data in consideration of its multiple channel character. In the encoding side, the random convolution operator is used to rapidly obtain the measurement vector of each channel which is subsequently reorganized as a measurement vector matrix. In the decoding side, a joint reconstruction model is proposed to reconstruct the hyperspectral data from the multiple measurement vectors. The model decomposes the hyperspectral data into the inter-channel correlated and differenced component in the sparsifying transform domain, where the correlated component with high spatial and spectral correlation is constrained to be graph structured sparse and the differenced component is constrained to be l1 sparse. A numerical optimization algorithm is also proposed to solve the reconstruction model by the alternating direction method of multiplier. Every sub-problem in the iteration formula admits analysis solution by introducing the auxiliary variable and linearization operation. The complexity of the numerical optimization algorithm is reduced. The experimental results demonstrate the effectiveness of the proposed algorithm.