电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2014年
12期
2909-2914
,共6页
刘哲席%阳建宏%杨德斌%黎敏
劉哲席%暘建宏%楊德斌%黎敏
류철석%양건굉%양덕빈%려민
信息融合%总不确定度%冲突证据
信息融閤%總不確定度%遲突證據
신식융합%총불학정도%충돌증거
Information fusion%Total uncertainty degree%Conflicting evidence
现有的冲突证据组合修正方法仅从证据距离、模糊度等描述信息不确定性的一个或几个方面对证据体的基本概率分配函数进行修正,对证据的关联性考虑不够充分。该文提出基于信息总不确定度的冲突证据组合修正新方法。该文在笛卡尔乘积的基础上定义提出组合总不确定度的概念,并给出根据融合前各证据体总不确定度预测融合后证据体组合总不确定度值域的方法。对冲突证据,利用各证据体总不确定度与组合总不确定度的比值,求出对证据基本概率分配函数的修正权重,再根据Dempster规则进行加权平均组合。信息融合的算例分析结果表明,与现有方法相比,该方法融合结果的总不确定度更小,更有利于融合结果的后续决策分析与数据应用。
現有的遲突證據組閤脩正方法僅從證據距離、模糊度等描述信息不確定性的一箇或幾箇方麵對證據體的基本概率分配函數進行脩正,對證據的關聯性攷慮不夠充分。該文提齣基于信息總不確定度的遲突證據組閤脩正新方法。該文在笛卡爾乘積的基礎上定義提齣組閤總不確定度的概唸,併給齣根據融閤前各證據體總不確定度預測融閤後證據體組閤總不確定度值域的方法。對遲突證據,利用各證據體總不確定度與組閤總不確定度的比值,求齣對證據基本概率分配函數的脩正權重,再根據Dempster規則進行加權平均組閤。信息融閤的算例分析結果錶明,與現有方法相比,該方法融閤結果的總不確定度更小,更有利于融閤結果的後續決策分析與數據應用。
현유적충돌증거조합수정방법부종증거거리、모호도등묘술신식불학정성적일개혹궤개방면대증거체적기본개솔분배함수진행수정,대증거적관련성고필불구충분。해문제출기우신식총불학정도적충돌증거조합수정신방법。해문재적잡이승적적기출상정의제출조합총불학정도적개념,병급출근거융합전각증거체총불학정도예측융합후증거체조합총불학정도치역적방법。대충돌증거,이용각증거체총불학정도여조합총불학정도적비치,구출대증거기본개솔분배함수적수정권중,재근거Dempster규칙진행가권평균조합。신식융합적산례분석결과표명,여현유방법상비,해방법융합결과적총불학정도경소,경유리우융합결과적후속결책분석여수거응용。
The common way of conflicting evidence combination is to modify the basic probability mass assignment of evidence bodies by a certain indicator which can reflect or describe the information uncertainty of the conflicting evidence. In existing conflicting evidence combination methods, indicators such as the distance of evidence and ambiguity are used. However, these indicators reflect only one or several aspects of the characteristics of the conflicting information uncertainty. A novel method of conflicting evidence combination is proposed based on the total uncertainty degree of information. The concept of combined total uncertainty of information is defined based on Cartesian product. An approach of predicting the range of fused information’s combined total uncertainty degree by the total uncertainty degree of each body of evidence before information fusion is also presented. Weights for each evidence body are obtained according to the total uncertainty degree of each evidence body and the combined total uncertainty on their Cartesian product. Then, the bodies of conflicting evidence are combined by the weighted average according to Dempster’s rule. Results of numerical examples of information fusion show that, compared with the existing approaches, the total uncertainty degree of the combined information obtained by the proposed method is smaller, which means the combined information is more helpful to subsquent decision analysis and data applications.