功能材料
功能材料
공능재료
JOURNAL OF FUNCTIONAL MATERIALS
2014年
23期
23122-23125
,共4页
姚荣迁%符长平%张帅丰%毛宇%冯祖德
姚榮遷%符長平%張帥豐%毛宇%馮祖德
요영천%부장평%장수봉%모우%풍조덕
自支撑硅氧碳薄膜%先驱体法%热导率%基板
自支撐硅氧碳薄膜%先驅體法%熱導率%基闆
자지탱규양탄박막%선구체법%열도솔%기판
freestandingβ-SiC/SiOx Cy/Cfree films%precursor method%thermal conductivity%substrate
利用先驱体熔融纺膜法,经熔融纺膜、氧化交联及900~1200℃不同裂解温度制得系列自支撑硅氧碳纳米镶嵌复合薄膜.利用红外光谱(FT-IR)分析氧化交联后及高温裂解薄膜的结构变化,通过 X 射线衍射(XRD)、拉曼光谱(Raman)与扫描电镜(SEM)对薄膜微观结构及形貌进行分析,采用电阻测试仪和激光热导仪对其进行电阻率与热导率进行表征.结果表明,硅氧碳纳米镶嵌复合薄膜具有较好的绝缘性能与热传导能力,随着裂解温度升高,薄膜电阻率减小,热导率大幅度增大.1200℃制备的样品具有合适电阻率和最佳热导率(46.8 W/(m·K)),薄膜以非晶态相SiOx Cy 和游离碳为基体,细小等轴β-SiC晶弥散分布在基体中,其表面平整度高通过丝网印刷可获得两条平行的均匀致密高温银浆电路层,有望大规模应用于大功率LED封装散热基板.
利用先驅體鎔融紡膜法,經鎔融紡膜、氧化交聯及900~1200℃不同裂解溫度製得繫列自支撐硅氧碳納米鑲嵌複閤薄膜.利用紅外光譜(FT-IR)分析氧化交聯後及高溫裂解薄膜的結構變化,通過 X 射線衍射(XRD)、拉曼光譜(Raman)與掃描電鏡(SEM)對薄膜微觀結構及形貌進行分析,採用電阻測試儀和激光熱導儀對其進行電阻率與熱導率進行錶徵.結果錶明,硅氧碳納米鑲嵌複閤薄膜具有較好的絕緣性能與熱傳導能力,隨著裂解溫度升高,薄膜電阻率減小,熱導率大幅度增大.1200℃製備的樣品具有閤適電阻率和最佳熱導率(46.8 W/(m·K)),薄膜以非晶態相SiOx Cy 和遊離碳為基體,細小等軸β-SiC晶瀰散分佈在基體中,其錶麵平整度高通過絲網印刷可穫得兩條平行的均勻緻密高溫銀漿電路層,有望大規模應用于大功率LED封裝散熱基闆.
이용선구체용융방막법,경용융방막、양화교련급900~1200℃불동렬해온도제득계렬자지탱규양탄납미양감복합박막.이용홍외광보(FT-IR)분석양화교련후급고온렬해박막적결구변화,통과 X 사선연사(XRD)、랍만광보(Raman)여소묘전경(SEM)대박막미관결구급형모진행분석,채용전조측시의화격광열도의대기진행전조솔여열도솔진행표정.결과표명,규양탄납미양감복합박막구유교호적절연성능여열전도능력,수착렬해온도승고,박막전조솔감소,열도솔대폭도증대.1200℃제비적양품구유합괄전조솔화최가열도솔(46.8 W/(m·K)),박막이비정태상SiOx Cy 화유리탄위기체,세소등축β-SiC정미산분포재기체중,기표면평정도고통과사망인쇄가획득량조평행적균균치밀고온은장전로층,유망대규모응용우대공솔LED봉장산열기판.
Freestandingβ-SiC/SiOx Cy/Cfree nanocomposite films were synthesized by melt spinning the polycar-bosilane (PCS)precursor.Their microstructure were characterized by Fourier transform infrared (FT-IR),X-ray diffraction (XRD)and Raman spectroscopy,morphology analysis was investigated by scanning electron mi-croscope (SEM).Resistivity and thermal conductivity of the films were measured at room temperature.Effect of pyrolysis temperatures on the heat dissipation properties of nanocomposite films were investigated.The re-sults show that thermal conductivity increases as the resistivity of theβ-SiC/SiOx Cy/Cfree films decreases by in-creasing pyrolysis temperatures.The sample sintered at 1 200 ℃ with good insulation (2.1 ×108 Ω·m)and high heat transfer capability (46.8 W/(m·K))can be silk-screened and used as heat dissipation substrate for high-power LED devices.The obtained results are expected to have important applications in high-temperature electronic and advanced optoelectronic devices.