中国电机工程学报
中國電機工程學報
중국전궤공정학보
ZHONGGUO DIANJI GONGCHENG XUEBAO
2014年
34期
6246-6253
,共8页
张广斌%束洪春%于继来%孙向飞
張廣斌%束洪春%于繼來%孫嚮飛
장엄빈%속홍춘%우계래%손향비
行波测距%可观测性分析%布点优化%0-1规划%扩展邻接矩阵%加权可测线长
行波測距%可觀測性分析%佈點優化%0-1規劃%擴展鄰接矩陣%加權可測線長
행파측거%가관측성분석%포점우화%0-1규화%확전린접구진%가권가측선장
traveling wave fault location%observability analysis%optimal placement%0-1 integer programming%extended adjacency matrix%weighed length of observed lines
220 kV 电网的站、线数量较多,电网拓扑复杂,如何经济、合理地配置220 kV线路的故障行波测距装置,实现故障测距功能的全覆盖,具有重要意义。该文分析线路故障电流行波可测性,采用扩展邻接矩阵对输电网各回线路和站际间的连接关系进行抽象。以工程实际条件与可测性分析结果相结合作为必要的附加条件,将电流行波测距装置在电网的优化布置抽象为含不等式和等式约束的线性0-1规划模型,进而确定模型参数与电网拓扑参数的关系及模型求解方法,获得行波测距装置的全网最优静态布置方案。在此基础上,以每退出一套行波测距装置导致单、双端测距原理所减少的直接与间接可测线路的加权长度最小为依据,确定行波测距装置的动态装设顺序。并以某220 kV实际电网为例,验证所提算法的可行性及有效性。
220 kV 電網的站、線數量較多,電網拓撲複雜,如何經濟、閤理地配置220 kV線路的故障行波測距裝置,實現故障測距功能的全覆蓋,具有重要意義。該文分析線路故障電流行波可測性,採用擴展鄰接矩陣對輸電網各迴線路和站際間的連接關繫進行抽象。以工程實際條件與可測性分析結果相結閤作為必要的附加條件,將電流行波測距裝置在電網的優化佈置抽象為含不等式和等式約束的線性0-1規劃模型,進而確定模型參數與電網拓撲參數的關繫及模型求解方法,穫得行波測距裝置的全網最優靜態佈置方案。在此基礎上,以每退齣一套行波測距裝置導緻單、雙耑測距原理所減少的直接與間接可測線路的加權長度最小為依據,確定行波測距裝置的動態裝設順序。併以某220 kV實際電網為例,驗證所提算法的可行性及有效性。
220 kV 전망적참、선수량교다,전망탁복복잡,여하경제、합리지배치220 kV선로적고장행파측거장치,실현고장측거공능적전복개,구유중요의의。해문분석선로고장전류행파가측성,채용확전린접구진대수전망각회선로화참제간적련접관계진행추상。이공정실제조건여가측성분석결과상결합작위필요적부가조건,장전류행파측거장치재전망적우화포치추상위함불등식화등식약속적선성0-1규화모형,진이학정모형삼수여전망탁복삼수적관계급모형구해방법,획득행파측거장치적전망최우정태포치방안。재차기출상,이매퇴출일투행파측거장치도치단、쌍단측거원리소감소적직접여간접가측선로적가권장도최소위의거,학정행파측거장치적동태장설순서。병이모220 kV실제전망위례,험증소제산법적가행성급유효성。
It is important to equip all the 220 kV transmission lines with travelling wave devices economically and feasibly, and realize the full coverage of the fault location method, since there are more substations and lines, and the topology is also more complex in 220 kV power grid. In this paper, the observability of fault induced current traveling waves of the transmission lines was analyzed, and extended adjacency matrix was used to describe the relationship among the lines and substations in power grid. The optimal placement of traveling wave devices was expressed as linear 0-1 integer programming model including inequality and equality constraint conditions, considering the limitation of practical engineering and results of the observability analysis. The parameters and solution method of the model can be determined and the static optimal placement of the global power grid can be obtained by solving the model. Based on the static optimal solution, the dynamic sequence of the each device installation can be determined, according to the minimum decreasing weighted observable length of the lines by single and double ended fault location principles caused by each device retreat. The proposed method is proven to be feasible and effective by tests considering certain actual 220 kV power grid optimal placement.