西安电子科技大学学报(自然科学版)
西安電子科技大學學報(自然科學版)
서안전자과기대학학보(자연과학판)
JOURNAL OF XIDIAN UNIVERSITY(NATURAL SCIENCE)
2014年
6期
1-5,88
,共6页
付卫红%王璐%马丽芬
付衛紅%王璐%馬麗芬
부위홍%왕로%마려분
欠定盲源分离%混合矩阵估计%势函数法%密度法%初始聚类中心
欠定盲源分離%混閤矩陣估計%勢函數法%密度法%初始聚類中心
흠정맹원분리%혼합구진고계%세함수법%밀도법%초시취류중심
underdetemined blind source separation(UBSS)%mixing matrix estimation%Laplace mixed model potential function(LMMPF)%density%initial clustering centers
针对原有的拉普拉斯混合模型势函数法复杂度高、随机选取部分观测数据点作为初始聚类中心的算法聚类结果不稳定、准确率低的问题,提出了一种改进的势函数欠定盲源分离算法.该算法在基于密度概念的基础上,以簇内距离小、簇间距离大为原则,选取部分高密度点作为势函数的初始聚类中心.理论分析与仿真实验表明,改进算法的复杂度大大降低,而估计准确度降低很少.在信噪比为10 dB时,该算法仿真时间降为原始势函数法的5%;相对随机选取算法,在计算复杂度基本一致的前提下,该算法的估计准确度大大提高,源信号个数估计准确率由61%提高到85%,混合矩阵估计误差由0.47下降为0.27.
針對原有的拉普拉斯混閤模型勢函數法複雜度高、隨機選取部分觀測數據點作為初始聚類中心的算法聚類結果不穩定、準確率低的問題,提齣瞭一種改進的勢函數欠定盲源分離算法.該算法在基于密度概唸的基礎上,以簇內距離小、簇間距離大為原則,選取部分高密度點作為勢函數的初始聚類中心.理論分析與倣真實驗錶明,改進算法的複雜度大大降低,而估計準確度降低很少.在信譟比為10 dB時,該算法倣真時間降為原始勢函數法的5%;相對隨機選取算法,在計算複雜度基本一緻的前提下,該算法的估計準確度大大提高,源信號箇數估計準確率由61%提高到85%,混閤矩陣估計誤差由0.47下降為0.27.
침대원유적랍보랍사혼합모형세함수법복잡도고、수궤선취부분관측수거점작위초시취류중심적산법취류결과불은정、준학솔저적문제,제출료일충개진적세함수흠정맹원분리산법.해산법재기우밀도개념적기출상,이족내거리소、족간거리대위원칙,선취부분고밀도점작위세함수적초시취류중심.이론분석여방진실험표명,개진산법적복잡도대대강저,이고계준학도강저흔소.재신조비위10 dB시,해산법방진시간강위원시세함수법적5%;상대수궤선취산법,재계산복잡도기본일치적전제하,해산법적고계준학도대대제고,원신호개수고계준학솔유61%제고도85%,혼합구진고계오차유0.47하강위0.27.
Aiming at the problem that the original Laplace Mixed Model Potential Function(LMMPF) algorithm has high complexity and the random initial cluster center algorithm has a low accuracy and stability,we propose an improved LMMPF algorithm.Based on the concept of density,we can choose some high-density data as the initial cluster centers.These data obey the principle that the distance between the data in the same group is small and the distance between groups is great.Theoretical analysis and experimental results show that compared to the original LMMPF algorithm the complexity of the new algorithm becomes much lower while the estimated accuracy is reduced only a little bit.When the Signal to Noise Ration(SNR)is 10 dB,the running time of the improved algorithm is reduced to 5%.Compared to the randomly-chosen algorithm,the new algorithm has a much higher accuracy:the accuracy rate of estimating the number of sources is raised from 61% to 85% and the mixing matrix estimated error is reduced from 0.47 to 0.27.