物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2014年
11期
2092-2100
,共9页
李松梅%尹晓琳%刘建华%张优%薛冰
李鬆梅%尹曉琳%劉建華%張優%薛冰
리송매%윤효림%류건화%장우%설빙
溶胶-凝胶涂层%Zn-Al双层氢氧化物%[V10O28]6-%腐蚀防护%电化学交流阻抗谱
溶膠-凝膠塗層%Zn-Al雙層氫氧化物%[V10O28]6-%腐蝕防護%電化學交流阻抗譜
용효-응효도층%Zn-Al쌍층경양화물%[V10O28]6-%부식방호%전화학교류조항보
Sol-gel coating%Zn-Al layered double hydroxide%[V10O28]6-%Corrosion protection%Electrochemical impedance spectroscopy
采用共沉淀法制备Zn-Al-[V10O28]6-双层氢氧化物(以下简称LDH-V),研究不同添加浓度(0.0、0.25×10-3、0.75×10-3、1.5×10-3、3.0×10-3 mol?L-1)的LDH-V对LY12铝合金溶胶-凝胶涂层形貌、耐蚀性的影响.采用扫描电子显微镜(SEM)和傅里叶变换红外(FTIR)光谱研究LDH-V对涂层形貌和结构的影响.运用中性盐雾实验对涂层进行耐蚀性评估.利用电化学方法对涂层在0.05 mol?L-1的NaCl溶液中的腐蚀行为进行研究.探讨加入LDH-V后溶胶-凝胶涂层的耐蚀机理.结果表明,一定量LDH-V的加入不仅可以提高溶胶-凝胶涂层的耐蚀性能,还可对涂层被破坏区域进行自修复,起到延缓铝合金基体腐蚀的作用.然而,当LDH-V的添加溶度超过一定值时,会破坏涂层的完整性并降低涂层的腐蚀防护性能.实验结果表明LDH-V最佳的添加浓度为1.5×10-3 mol?L-1.
採用共沉澱法製備Zn-Al-[V10O28]6-雙層氫氧化物(以下簡稱LDH-V),研究不同添加濃度(0.0、0.25×10-3、0.75×10-3、1.5×10-3、3.0×10-3 mol?L-1)的LDH-V對LY12鋁閤金溶膠-凝膠塗層形貌、耐蝕性的影響.採用掃描電子顯微鏡(SEM)和傅裏葉變換紅外(FTIR)光譜研究LDH-V對塗層形貌和結構的影響.運用中性鹽霧實驗對塗層進行耐蝕性評估.利用電化學方法對塗層在0.05 mol?L-1的NaCl溶液中的腐蝕行為進行研究.探討加入LDH-V後溶膠-凝膠塗層的耐蝕機理.結果錶明,一定量LDH-V的加入不僅可以提高溶膠-凝膠塗層的耐蝕性能,還可對塗層被破壞區域進行自脩複,起到延緩鋁閤金基體腐蝕的作用.然而,噹LDH-V的添加溶度超過一定值時,會破壞塗層的完整性併降低塗層的腐蝕防護性能.實驗結果錶明LDH-V最佳的添加濃度為1.5×10-3 mol?L-1.
채용공침정법제비Zn-Al-[V10O28]6-쌍층경양화물(이하간칭LDH-V),연구불동첨가농도(0.0、0.25×10-3、0.75×10-3、1.5×10-3、3.0×10-3 mol?L-1)적LDH-V대LY12려합금용효-응효도층형모、내식성적영향.채용소묘전자현미경(SEM)화부리협변환홍외(FTIR)광보연구LDH-V대도층형모화결구적영향.운용중성염무실험대도층진행내식성평고.이용전화학방법대도층재0.05 mol?L-1적NaCl용액중적부식행위진행연구.탐토가입LDH-V후용효-응효도층적내식궤리.결과표명,일정량LDH-V적가입불부가이제고용효-응효도층적내식성능,환가대도층피파배구역진행자수복,기도연완려합금기체부식적작용.연이,당LDH-V적첨가용도초과일정치시,회파배도층적완정성병강저도층적부식방호성능.실험결과표명LDH-V최가적첨가농도위1.5×10-3 mol?L-1.
Zn-Al-[V10O28]6-layered double hydroxide (LDH-V) as a type of corrosion inhibitor was prepared with the co-precipitation method using one solution containing zinc and aluminum nitrates precursors and a second solution containing Na3VO4, where the decavanadate anion is speciated at pH 4.5. The hybrid sol-gel solution was prepared from 3-glycydoxypropyltrimethoxysilane (GPTMS) as the organic precursor sol and zirconium n-propoxide (TPOZ) as the inorganic precursor sol. The doped coatings were obtained by dip coating the way that the samples were immersed into solutions with different LDH-V concentrations (0.0, 0.25×10-3, 0.75×10-3, 1.5×10-3, 3.0×10-3 mol?L-1). The morphology and corrosion resistance of the sol-gel coating doped with different LDH-V concentrations were studied. The sol-gel coatings were investigated by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The salt spray test was used to evaluate the corrosion resistance of the different coatings. The corrosion behavior of the coatings was evaluated by electrochemical impedance spectroscopy (EIS) during immersion in 0.05 mol?L-1 NaCl solution. The results showed that LDH-V not only improves the corrosion resistance of the coating, but also provides a function for self-healing of broken coatings. However, when the LDH-V doping concentration was high, it destroyed the integrity of the coatings and decreased the corrosion resistance of the coatings. The best LDH-V doping concentration was 1.5×10-3 mol?L-1.